
COMP 335 Programming Languages Fall 2025

Project PL3

Due Dates: Part 1: October 19

Part 2: November 4

Purpose

In this project, you will get first-hand experience using a BNF grammar and writing part of a
compiler. You will also gain insight writing software in a group. To this end, you may work with
one partner. In special circumstances, I will allow a group of three; see me.

Problem

The GNU Project has hired your group to help implement a compiler for a new, smaller version
of C, called C-. You are responsible for the syntax checking (parsing) portion of the compiler.
Since the C language is stable and used for system programs, the parser will be written in C. The
program should implement top-down (predictive) parsing, similar to what we did in class. To write
the program, you will use the recursive descent technique applied to the given BNF rules. You can
find the in-class, small-scale example of this technique on the course web page as littleParser.c.
Of course, there are additional tutorials/notes available on the web.

This is an involved project. To make sure you are on the right track, the first task is to write a
scanner/lexical analyzer. That is the part of the compiler that scans the input file and finds tokens,
which is essential for a working parser. Thus, the smaller Part 1 is to complete the scanner code.
Note that finding tokens is more than just displaying characters/strings!

The larger Part 2 is to write a complete C- parser in C.

Input

The input to your program (Parts 1 and 2) is a program written in C-. The filename extension
should be cm. The input filename should be given on the command line, as shown below. For Part
1, the name of your scanner should be scan:

scan aSampleProgram.cm
The name of your syntax analyzer should be parse:

parse aSampleProgram.cm
Note that these names only have meaning in the Makefile, where you create the executable files.

Output

Part 1: The scanner should read the input program and simply display a list of the tokens it finds
and their meaning (IF, ID, etc.). The output should show each of the tokens found in a line,
followed by another line that shows the matching meanings. For example, a valid statement in the
language is (note spacing is irrelevant):
x:=num + 42;

The output should be similar to:

x := num + 42 ;

ID ASSIGN ID ADD-OP INT-CONST STMT-END

where the meanings math those in the BNF, below.

Part 2: The program should check the input for any syntax errors as defined by the BNF grammar.
If there are no errors, the program should display a message to that effect. If there are errors,

COMP 335 Programming Languages Fall 2025

the program should display the line number, the offending line, and give an appropriate error
message(s). The more lines/errors that your parser can find, the better. You will now see how
difficult it can be to write an “appropriate” error message and may get a new appreciation for the
compilers you use regularly. To get the maximum points, you should also indicate where in the line
the error occurred by using a ˆ or other symbol:

7: int a .

^

Error - semicolon expected

Specifics

• The parser should be written in ANSI standard C.

• The code should be adequately commented; see your earlier projects.

• Except for the current and possibly the look-ahead token, you should not use global variables.

• The grading for this project will be based mostly on how well your program finds and reports
syntax errors. I will barely look at your code except for to read comments and to check that
you have used functions adequately (that is, functions are not too long, including main(),
and there is an overall program design).

Notes

• It may be easier to write the scanner/lexical analyzer using a finite state machine (FSM).

• Hint: it may be best to read the file one character at a time (rather than using strings).

• It may be easier to write the parser from syntax diagrams than from the BNF rules. Thus,
you may want to convert all of the given BNF rules to syntax diagrams, and then generate
your code from the diagrams.

• Since you are still new to C, this may take a while, even with a group. Start by writing
code that will read and display the input properly. Then be sure that you can get tokens
properly. Only at that point should you implement some of the short BNF rules, one at a
time. Continue adding in new rules until your parser is complete.

• C- is very close to C. Thus, you can change a few things in your test program (like substituting
{} for begin and end) and see what errors the gcc compiler gives you. Compare this with
what your own compiler does.

• It is not easy to write a parser. Although Part 1 is due two weeks before the entire project
is due, your group should already be working on the parser before the scanner is turned in!

• For Part 1, send one tarball of your group’s scanner via Canvas the usual way (tarball) by
11:59:59 PM on the due date. The submission should include a Makefile. In class the next
day, hand in a sheet of paper listing the names of your group members and the name that will
be on the electronic submission. A good choice for the submission would be a creative name
for your group or “company.” Then append a “PL3.1” to your file name to indicate Part 1;
for example: GooseCoPL3.1.tar. This portion will be worth 25% of the entire project. The
grading of this portion will be based solely on the output of your program.

COMP 335 Programming Languages Fall 2025

• For Part 2, send one tarball of your group’s completed project via email, using the same
name as for Part 1, except append a 2 to the name: GooseCoPL3.2.tar. Once again, the
submission should include a Makefile. In the next class, submit only one or two sheets of
your program that include your introductory comments which, in turn, should include the
names of everyone in the group. Do not print out the entire program! This portion will be
worth 75% of the project.

BNF Rules for C-, in alphabetical order (modified from C: A Reference Manual, by Harbison and
Steele, Jr., 4th Edition, Tartan Inc., 1995, with revisions):

• the top level (i.e., root) is <program>

• this BNF may not be reduced; that is, you can make it simpler by applying some basic
reductions

• let me know if you find any typos or missing rules!

<add-op> ::= + | -

<additive-expression> ::= <multiplicative-expression> |

<additive-expression> <add-op> <multiplicative-expression>

<assignment-expression> ::= <conditional-expression> |

<identifier> := <unary-expression>

<compound-statement> ::= begin <declaration-list> <statement-list> end |

begin <declaration-list> end | begin <statement-list> end

<conditional-expression> ::= <logical-or-expression>

<conditional-statement> ::= <if-statement> | <if-else-statement>

<constant> ::= <integer-constant> | <floating-constant>

<declaration> ::= <declaration-specifiers> <initialized-declarator-list> ;

<declaration-list> ::= <declaration> | <declaration-list> <declaration>

<declaration-specifiers> ::= <type-specifier>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digit-sequence> ::= <digit> | <digit> <digit-sequence>

<equality-op> ::= = | !=

<equality-expression> ::= <relational-expression> |

<equality-expression><equality-op><relational-expression>

COMP 335 Programming Languages Fall 2025

<expression> ::= <assignment-expression>

<expression-statement> ::= <expression> ;

<floating-constant> ::= <digit-sequence> . <digit-sequence>

<floating-type-specifier> ::= float

<identifier> ::= <letter> | <identifier> <letter>

<if-statement> ::= if (<conditional-expression>) <statement>

<if-else-statement> ::= if (<conditional-expression>) <statement> else <statement>

<initialized-declarator-list> ::= <identifier> |

<initialized-declarator-list> , <identifier>

<integer-constant> ::= <digit> | <integer-constant> <digit>

<integer-type-specifier> ::= int

<letter> ::= a | b | ... | z | A | B | ... | Z

<logical-and-expression> ::= <equality-expression> |

<logical-and-expression> && <equality-expression>

<logical-or-expression> ::= <logical-and-expression> |

<logical-or-expression> || <logical-and-expression>

<multiplicative-expression> ::= <unary-expression> |

<multiplicative-expression><mult-op><unary-expression>

<mult-op> ::= * | / | %

<null-statement> ::= ;

<parenthesized-expression> ::= (<expression>)

<primary-expression> ::= <identifier> | <constant> | <parenthesized-expression>

<program> ::= program main () <compound-statement>

<relational-expression> ::= <additive-expression> |

<relational-expression> <relational-op> <additive-expression>

<relational-op> ::= < | <= | > | >=

COMP 335 Programming Languages Fall 2025

<statement> ::= <expression-statement> | <compound-statement> |

<conditional-statement> | <while-statement> | <null-statement>

<statement-list> ::= <statement> | <statement-list> <statement>

<type-specifier> ::= <floating-type-specifier> | <integer-type-specifier>

<unary-expression> ::= - <primary-expression> | <primary-expression>

<while-statement> ::= while (<conditional-expression>) <statement>

Visual Studio includes a number of doodads, froufrous, and whatnots that are unimportant for

your core task of learning C++.

– Ray Lischner, in C++: The Programmer’s Introduction to C++ (Apress, 2009)

