COMP 335 Programming Languages Fall 2025

Project PL1
Due Date: September 21

Purpose
In this small(ish) project, you will get a taste of being an IT professional by writing a few short
Linux scripts using Bash.

Problem

You are an IT engineer working for MacroStiff, and as such, you have to supply software and
operating system tools for the various software engineers and computer scientists. Many of them
don’t want to be bothered writing scripts to take care of relatively simple tasks, so the job falls
to you. You must write a small suite of Linux Bash scripts for various tasks, the names for which
follow Linux conventions of being all lower-case and which will be run without file extensions (the
file names for the scripts themselves should have the .sh extension):

1. myfind [OPTION] filename - search for filename.

2. myoccur word filename - find the number of occurrences of word in filename. This should be
case insensitive.

3. mymeanf [OPTION] filename - find the floating point average of a list of numbers stored in
the file named filename.

4. mymeani filename - find the floating point average rounded to the nearest integer of a list of
integers stored in the file named filename.

5. mymedian filename - find the median of a list of integers stored in the file named filename.

6. myspell filenamel filename2 - spell check the words in the file filenamel, where filename?2
contains a list of the found misspelled words, one per line and without duplicates.

7. mystore [0OPTION] - display all of the file names and file size for the current user, no matter
what directory the script is run in.

The output should be sorted by file size, and display 10 lines at a time. Pressing the space
bar should then show the next 10 lines. The output should be formatted as follows:

2.3M /home/student/mydir/afile.doc
1.1M /home/student/otherdir/anotherdir/foo.txt
3K /home/student/Desktop/one.cpp

8. setup.sh - automatically set up the scripts so that they can be run and done so without the
.sh extension. This will be run first, and then all of the above should work.



COMP 335 Programming Languages Fall 2025

Input
The following uses the number of the script as defined above.

1.

8.

The option is —a which means search “all”; search the entire user’s file space. With no option,
just search the current directory. The file name is a valid string with no spaces. Underscores
and periods are valid. This is the case with all file names below as well.

. The file contains any number of lines and words of plain ASCII text. The word to find is a

legal string with no spaces or punctuation.

. The option is -number, where number is an integer from 1-5 indicating the number of decimal

points to round to. If no option is given, then the default is two decimal points. The file
contains a list of integers, one per line. There is no other data in the file.

. The file contains a list of integers, one per line. There is no other data in the file.
. The file contains a list of integers, one per line. There is no other data in the file.

. The option is —c where all the words in the output list should be in lower case. The file

filename1 is simply an ASCII text file; it may contain any valid ASCII characters.

. The option is —s where the output will be in smallest to largest order. By default, the output

should be largest to smallest.

No input.

If some error condition occurs, then the script’s behavior should be consistent with Linux com-
mands. This means that error messages, or lack thereof, are up to you.

Output

e Output should be as defined for the problems above and/or how you think Linux would handle

it.

e Additional output for myspell:

— the list of words is alphabetized

— every word is shown only once; if two words are the same but one is capitalized and
the other is not, then they count as two different words; however, see below for another
option.

— if the command is given as:
myspell -c filenamel filename2

then the script should work exactly as above except that all the words in the output
list should be in lower case. That means that if two words in the input are the same
but one was capitalized and the other was not, only the lower case word should be in
the output list. If there is a misspelled word that is only used with capitalization in the
input, it should be stored in lower case in the output list.



COMP 335 Programming Languages Fall 2025

e Following Linux command conventions, labels and explanatory text is not necessary or even
desirable (in case you want to pipe output to another script, for example). If a function
returns no data (for example, there are no occurrences of a word in a file), the output is up to
you, but should follow Linux conventions (e.g., do you want to output 0 or nothing at all?).

Notes

e Do not use awKk in any of your scripts.

e There is a link to a Bash “cheatsheet” on the course web page. There is, of course, a wealth
of information on the Interwebs and our new buddy Al, as well.

e Put a comment at the top of each script with:

your name

— the name of the script

a description of its function
— an exact description of valid input

— an exact description of what is output

e Be sure to name and implement all of your scripts as described above. I will write my own
script to test yours, and if something goes wrong because you have misnamed a file or put
the arguments in an order not specified, your grade will suffer.

e Being a good IT professional, you want to be as succinct as possible in all of your scripts.
This means that you want to use as many Linux and/or Bash built-in tools as is feasible. Try
to make each script as short as possible.

e Bundle all of your scripts into one tarball:
tar cvf yourLastNamePL1.tar filel file2 file3 ...

Upload the tar file (called a “tar ball”) view canvas before 11:59:59 PM on the due date. (By
the way, you might want to test that your tar ball before turning it in.) Turn in a printed
copy of your scripts at the beginning of class the next day. This printout should be as short
as possible; combine all of your scripts into one file for printing, with two blank lines between
each script. Write and sign the Honor Code on what you turn in.

This is a feature, not a bug.
— Schwartz and Christiansen, Learning Perl, p. 65



