COMP 335 Programming Languages Fall 2025

Project PL2
Due Date: October 3

Purpose
This project is to help you get familiar with the C language, and to experience why C is the
language of choice for systems programs. In fact, the Unix and Linux kernels are written in C.

Problem

MacroStiff was very happy with your work on project PL1. Now they want tools that are even
more useful by being operating system independent. To this end, they want you to write more
system tools, but now written in C. Thus, your programs will run on any platform for which there
is a C compiler. This means that you could theoretically use these Linux-like system commands
on the command line in Windows and MacOS!

The following is a list of tools they wish you to implement in C. As in project PL1, you will have

multiple programs:

1. Caverage filename - find and display the floating point average of a list of integers stored in
the file named filename. Same as in PL1, only this time written in C.

2. Ccp filenameA filenameB - copy the contents of filenameA to a file named filenameB; see
Linux’s ¢p command.

3. Ccat [OPTION] filename - display the contents of filename, where the options are (including
none):
e —n - number all output lines

e —b - number of nonempty output lines
See Linux’s cat command.

4. Cwc filename - find the number of lines, words, and bytes (characters) in filename; see the we
command.

5. Csort [OPTION] filename - sort the contents of filename, where the options are (including
none):
e —1 - numeric sort
e T - reverse sort
e —u - output only the first of an equal run of strings or numbers

e —nr - numeric sort in reverse order

See the Linux sort command.

Input
For Caverage, the file contains a list of integers numbers, one per line. There is no other data in
the file.

For Csort, the file contains a list of strings/integers/floats, one item per line.



COMP 335 Programming Languages Fall 2025

For the rest of the programs, the input file contains an unknown number of lines of any length
ASCII text, which may or may not include numbers in both integer and floating point form.

Output

Output should be as defined for the problems above and/or how you think Linux would handle it.
Following Linux command conventions, labels or explanatory text are not necessary or desirable.
In any case, check out how all of the commands work in Linux with various input data.

If some error condition occurs, then the program’s behavior should be consistent with Linux com-
mands, as before. Having said this, I am not expecting you to write programs that can handle any
sort of data that a user might throw at them. This is not a course in error checking.

Specifics

e C program file names should end with .c.

e All of your programs should be written in ANSI C. You can use any compiler/IDE on any
platform, but be sure that you are using standard C (watch out for Microsoft compilers).
You may wish to test your program in csLab using the gnu C compiler. An example compile
directive is as follows:

gcc —ansi Ccw.c -o Ccw

where

— gce = gnu ¢ compiler

— -ansi = ANSI (American National Standards Institute) flag which denotes standard C
— Ccew.c = file to compile

— -0 = compiler option that redirects output (executable) to a file

— Ccw = name of the executable file. If you don’t redirect the output, the default exe-

cutable file name is a.out.

e Write a Makefile that will compile all of your programs and create the correctly named
executable files. Write the file so that when I type:
make all

all of your programs will be compiled with executable names that match the file name (without
the ‘c’). Turn in the Makefile along with all of your source code.

e You should write good code; that is, break a program down into small functions. No function,
including main(), should be longer than about 20 lines.

e Be sure to name and implement all of your programs as described above. I will write my own
script to test yours, and if something goes wrong because you have misnamed a file or put
the arguments in an order not specified, your grade will suffer.



COMP 335 Programming Languages Fall 2025

Notes
e As in the previous projects, include a comment at the top of each program with:

— the name of the program

your name

a description of its function

— a description of valid input

an exact description of what is output

e Comment each function, including each parameter.

e The programs get progressively more difficult. Don’t wait to get started, as sort may take
some time. Note that many of the programs will have similar input/output processing; it’s
OK to reuse your own code in each of the different programs.

e Write one program at a time, and add improvements incrementally. You should always have
a set of programs that compile and run by the deadline, even if they don’t do everything that
is specified above; e.g., the u option doesn’t work for Csort. It is better to turn in a partially
working program(s) than a lot of code that doesn’t run.

e Use established algorithms for common items, such as sorting. Copy a good sort function
from a text or the interwebs. Remember that it’s not acceptable to copy code from a friend
or to copy an entire program. Also refer to the syllabus for the AI policy.

e As before, bundle all of your programs and Makefile into one tarball:
tar cvf yourLastNamePL2.tar filel file2 file3 ...

Submit the tar file via Canvas before 11:59:59 PM on the due date. Turn in a printed copy of
the Csort.c program (only!) with your signed Honor Code at the start of class on Monday.

I must admit, there have been times in my life when I've felt calmer.
— Richard, on The Great British Baking Show (2015)



