
COMP 318 Algorithms Spring 2026

Assignment A1

Due Date: February 5

Purpose
This project is meant to help you refresh your memory regarding object oriented techniques in
C++, such as inheritance, virtual functions, and polymorphism.

Problem
Gambling is one of the country’s greatest pastimes, now more than ever. One very popular method
of gambling involves slot machines, once called one-armed bandits for the lever that the player
pulled; now one simply pushes a button.1 There are many different types of slot machines, but
they all work in the same general way. A player inserts one or more (virtual) coins into a (virtual)
slot, then presses a button to initiate play, in which several reels of “lucky symbols” spin around
until they finally come to rest in some configuration. Depending on which symbols are visible on
the front of the machine, the player may receive a payoff. But probably not.

To entice players to continue to feed coins into the machines, casinos take advantage of human
psychology. They program the machines to give out lots of small prizes (1, 2, or 5 coins), knowing
that the player will invariably feed all of these back into the machine hoping to win the jackpot.
Jackpots are quite rare, but the machines are programmed to give these out from time to time too,
so that players will feel they have a chance to hit it big. Casinos cluster hundreds of machines in
a single room so that players will frequently hear others win and, occasionally, hear somebody win
a jackpot. This keeps the player interested, and the casino rich.

You have been hired by ABCDE Corporation (Awesome Bob’s Casino and Donut Emporium) to
write a slot machine program. The program will allow a player to play a few different slot machine
versions, with different payouts. You can try out a classic 3-reel (free) slot machine game at

https://www.freeslots.com/Slot3.htm

as just one example. You can watch your virtual balance go down the drain.

Input
The program should first prompt for the number of quarters (credits) to start with. Since the
machine is run by software instead of constrained by hardware, there can be many built-in options.
Your program should thus prompt the player if 3, 4, or 5 reels are desired. This stays constant
for the remainder of the game. At each round, the machine should prompt for the number credits
to play. The winnings are based on the number of reels and the number of credits played. Three
symbols in a row is all that is needed to win; if playing more than three reels, matching more than
three symbols yields higher winnings. Subtract credits from the total at each round; the program
should stop and/or ask for more credits when the balance is 0. Credits should be added when the
player wins. Finally, when the player inputs a 0 for the number of credits to play, the game should
stop.

Output
The program should first display some sort of table showing how much can be won in terms of
the number of credits played. For example, if there are three hearts, then the winnings might be

1What fun is that??



COMP 318 Algorithms Spring 2026

3× the number of credits played. Keep this simple; see Wikipedia or other online source for some
guidelines as to winning percentages. The key at any casino is to have lots of small winners and
few big winners. This keeps players coming back hoping to be the big winner.

After each round, the program should display the symbol on each wheel when it comes to rest. The
winnings or a message stating a loss should be displayed at the end of each round. The current
number of credits should be displayed as well.

Specifics
You should use C++ object oriented ideas as much as possible. To incorporate inheritance and
polymorphism, you must use the design shown below. It may not be how you might design the
game, but this will force you to think about how to write the program with as much code reuse as
possible, and to write code to someone else’s specifications (like you will do in industry). In other
words, you want to use the power of inheritance so that the base class (reel) functionality is used
as much as possible in the derived classes.

machinemachine machine

slot

machine

3 reel 4 reel 5 reel

reel

• To simulate the reels spinning, use a random number generator. The function rand() is
sufficient for this purpose. Make sure you “seed” it properly so you don’t always get the same
set of numbers.

• The “lucky symbols” should be represented by Unicode characters. Choose six or so symbols
from https://www.utf8-chartable.de/unicode-utf8-table.pl?start=9984. You do not
have to write a graphical interface or show the reels spinning or anything fancy like that.
Note that a reel may have a multiple number of the same symbol, which increases the odds
of getting a match with that symbol.

• The payoff should be more-or-lessrealistic: the player should win occasionally. The amount
of the winnings should be (non-linearly) higher the more credits are input and/or a different
number of reels is played. More succinctly: the easier it is to win, the lower the payoff should
be. This can be programmed as follows: If a wheel has several hearts and only one star (these
are two possible Unicode symbols), then there would be a lower probability of getting three
stars (on a 3-wheel machine) than three hearts. Thus, if the player got three stars, she would
get a higher payoff than if she won with three hearts. As noted above, see online sources for
more payoff information.



COMP 318 Algorithms Spring 2026

• Your code should be adequately commented. Be especially careful in commenting how all of
the classes “fit” together.

– Include an introductory comment as specified in class.

– Each class should have a comment describing what it does in general.

– Every variable and data member should be commented.

– Every function/method should be commented with a short general description of what it
does, a description of any parameters (which could mean “None”), and a description of
the output/result. This means that each function/method comment should be at least
three lines long.

Notes

• The key to a good grade is to reuse code as much as possible. If you find you are writing
almost the same function three times, for example, then it’s time to rethink your approach.
Inheritance and virtual functions can really help here.

• You can earn up to 90 points if you do not use virtual functions. You can earn up to 100
points if you use virtual functions that are non-trivial and the number of reels is not stored
anywhere within the class structure.

• The odds/methods of winning are not that important, as long as your approach is reasonable.
We are not creating a true slot machine.

• You are free to use any C++ features and libraries, as long as they are standard in C++17.

• Turning in:

– If you’re writing one file, name your file lastnameA1.cpp.

– If you’re writing multiple files, name your files lastnameMain.cpp, lastnameA1.cpp,
etc, as in gousieMain.cpp, gousieA1.cpp, etc. Zip them together using the same
convention: lastnameA1.zip, as in gousieA1.zip.

– Turn in the project via Canvas before 11:59:59 PM on the due date.

– A printed version of your source code (yep - actual paper!) is due at the beginning of
class on February 6th.

– Write or print and sign the Wheaton Honor Code Pledge on what you turn in: “I have
abided by the Wheaton College Honor Code in this work.”

• This may seem confusing/complicated/arduous, but it is really not a very long program. Take
some time to think things through before beginning to code.

• Remember to save all of your work until your project is returned.

Lotteries are for people who are bad in math.
– Unknown


