syllabus for

DNA

bio/comp 242

Instructors: Betsey Dyer Mark LeBlanc
bdyer@wheatoncollege.edu mleblanc@wheatoncollege.edu
SC-227 508.286.3951 SC-103 508.286.3970
Hours: by appointment/TBA Hours: M/T/W 2-3, R 10-11

Meeting Times: Tuesday, Thursday 11:00-12:20
Room A118, Science Center (on some days we will continue on
to either the csLab or the genetics lab, room 121)

Text:
Perl for Exploring DNA by LeBlanc and Dyer
(Oxford University Press 2007)

Additional readings and use of web sites will be
assigned in class. The details are provided in the
syllabus and/or URLs are listed in the Web Resources
section on the next page.

An amazing blend of science, computing, and mathematics
emerges when considering the molecule "Deoxyribonucleic Acid" (DNA). DNA is
the blueprint of life for all organisms on Earth and throughout evolutionary
time. Its distinctive and beautiful physical nature, a double helix of four
bases, maps onto its functionality as a bearer of information, generation
after generation. Fully sequenced genomes including the human genome have
become the starting point for attempts to answer a wide range of biological
and quantitative questions. This course explores DNA from the following
points of view: (1) computer science for deciphering the meanings of the
sequences of bases (A, C, G, and T) and writing new software to answer
original questions; (2) molecular biology by using various laboratory
techniques for visualizing and analyzing DNA; (3) organismal and evolutionary
biology for interpreting the varied consequences of having such an
information-rich and yet mutable molecule, and (4) applied mathematics when
considering counting problems, introductory statistical analyses, and the
implications of having too much data. Historical and ethical aspects of DNA
also will discussed. Students are encouraged to enhance their broader
understanding of DNA by taking the connection "Genes in Context" with
Philosophy 111 (Ethics). This DNA-242 course satisfies the Quantitative
Analysis (QA) general education requirement.

GOALS for the COURSE:
1. Encourage creativity in programming with the Perl language and using
 regular expressions to explore sequences of DNA.
2. Instill confidence with solving quantitative problems.
3. Gain exposure to a breadth of DNA-related topics.
4. Foster personal experiences with a diversity of aspects of DNA.
 <insert your goals here>
5. ___________________ ___________________
Web Resources:

From the PBS show NOVA: “Cracking the Code of Life”
Watch the program in 16 online video segments
http://www.pbs.org/wgbh/nova/genome/program.html

From the Dolan DNA Learning Center & Cold Spring Harbor Laboratory: “DNA From the Beginning”. DNA from the Beginning is organized around key concepts. http://www.dnaftb.org/dnaftb/

NCBI: National Center for Biotechnology Information

A Perl FAQ
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfaq1.html

The Timeline of Perl and its Culture v3.0
http://history.perl.org/PerlTimeline.html

Wheaton College Genomics Group
http://genomics.wheatoncollege.edu/

Notes on grading, due dates, and submission procedures
Because the lab and class preparation is costly both in money ($) and time, you must attend all classes and labs. When homework is “due in class”, this means at the beginning of the class on that particular day, e.g., we will collect your homework at the start of class. Homeworks that arrive after the class and up to one day late will lose 10%. No homeworks are accepted after one-day late.

Programs are due on Mondays (see detailed syllabus); however, since we know from experience that many students like to use the last night for testing, we will allow you to submit your programs until 5am the following day. For example, Program #1 is due MON, Sept 17th, but you can submit it electronically until 5am Tue, Sept 18th. Programs submitted after this time will lose 20% each day it is late up to two days late. A program submitted more than two days late will not be accepted and will receive a grade of zero. In addition to electronically submitting your Perl programs (more instructions will be given in class), you must submit a hardcopy printout of your program in class the immediate Tuesday after it is due. Note that Perl programs must always be printed in landscape mode and your source listing must be stapled. (We will deduct points if you do not print in landscape and/or you do not staple your source code listing).

Final projects are a significant part of your final grade (20%). Your professors will determine the team pairs. Each pair of students in a group will receive the same grade for each part of the project (see next page).

It is expected that you spend at least 2 hours on reading and practice problems for every hour of lecture. This computes to at least 6 hours of work outside of class per week. This should be done throughout the semester.

Please assume all deadlines are fixed. Obviously, see one of your professors if you know of a conflict beforehand.
Honor Code Revisited: It goes without saying that all submitted work will be the student’s own, in keeping with the Wheaton Honor Code. For labs, you may get help from fellow classmates, but remember that all submitted work must be your own. All homeworks, Perl programs, and other hand-written work must be your own from beginning to end unless otherwise noted in the instructions (e.g., paired work).

Guest Lectures
- Shawn McCafferty, Biology
 “Sequencing DNA”, Sept. 20th
- Mike Kahn, Statistics
 “Randomness”, Oct. 18th
- Teresa Celada, Philosophy
 “Ethical Questions”, Oct. 11th and “More Questions”, Nov. 27th

Ethical Moments (sprinkled throughout the semester)

YOUR GRADE

5% **ATTENDANCE/PARTICIPATION**
based on attendance and participation in lab, lecture, and guest lectures

10% **QUIZZES** (five)
on Perl syntax, dates TBA, (usually at the beginning of the class following the one where you get new project specs)

15% **HOMEWORKS** (eight)
- Sept 4: Homework #1 – 2 points
 - review of 1953 articles
- Sept 6: Homework #2 – 2 points
 - installation of Perl environment
- Sept 11: Homework #3 – 2 points
 - your own RegEx and DNA annotation by hand
- Sept 26: Homework #4 – 2 point
 - attend the Norman Johnson Lecture
- Oct 5: Homework #5 – 2 points
 - WIKI on dog gene regulation
- Oct 16: Homework #6 – 2 points
 - BLAST lab
- Oct 19: Homework #7 – 1 point
 - chalking RegEx in sidewalk art
- Nov 1: Homework #8 – 2 points
 - Spider web explanations, SCOPUS search (Homework #8 will be with student pairs)

50% **PROGRAMS** (six) These are due on Mondays
- Sept 17: Program #1 (5%)
 - String Play
- Sept 24: Program #2 (5%)
 - Chargaffin Counts
- Oct 1: Program #3 (10%)
 - Gene Finder
- Oct 15: Program #4 (10%)
 - “eLmer” a motif finder
- Oct 29: Program #5 (10%)
 - Fuzzy Olfactory Gene Counter
- Nov 12: Program #6 (10%)
 - Building a Concordance

20% **Final Project**
- Nov 20: Proposal (Introduction & Methods) (5%)
- Dec 4 or 6: Oral Presentation (15 minutes) (5%)
- Dec 6: Final Paper, Software, and Results (10%)

As you can see, the final projects are a significant part of your final grade (20%). Your professors will determine the team pairs. Each pair of students in a group will receive the same grade for each part of the project. Each of the three parts (Proposal, 15 minute Oral Presentation, Final Paper including your software and results) will receive a separate grade.

Note: Bonus Points will be awarded to students who discover errors (especially technical and factual errors) in the book. The number of points awarded will be determined by the instructors.
Week 1

Aug 30th THURS

```print “hello class”;```

The THREE THREADS of this class (and keeping track of them as they intertwine)
(1) Writing software to decipher information in DNA sequences
(2) Working with and visualizing DNA in the wet and dry labs
(3) History and ethical implications of our understanding of DNA

Why Programming?
(i) when the data you have is not quite enough to answer your question
(ii) learning to design algorithms provides an appreciation for the rigor and
    precision that is required to solve computationally-intensive problems
(iii) an intensive experience with solving problems by writing your own
    programs will help you lead teams throughout your career
(iv) scripting (often called programming) encourages you to be creative with
    your questions and adventurous like an explorer

Homework #1: in each of the three articles, highlight the most interesting
sections and and come up with at least one question from each paper. The
three questions are due in class both on the board and typed-up on Tues.
Sept 4. **Come to class early and write one of your questions on the board!**

Readings:

Week 2

Sept 4th TUES

**Homework #1 due in class** – you write a least one good question about the
readings on the chalkboard before class begins.

A brief history of the discovery of DNA structure: 50+ years since the joint
publications on the structure of DNA -- Franklin, Watson, Crick, and Wilkins in
Homework #2: Read Chapters 1 and 2. **Install (1) Perl and (2) a Programming Environment on your own computer.** Write at least two paragraphs (and up to one page) about how the installations went. We are particularly interested in your assessment of the directions in the book; include two sections on (a) Your Difficulties and (b) Suggestions to the Authors. *(Due at the start of class on Thursday Sept 6th).*

**Sept 6th THURS**
Homework #2 (an account of your successful installation) due in class.

Introduction to Regular Expressions (RegEx): a tool for searching for patterns in DNA sequences—**Be sure to have the book with you; we will be using Chapter 4 “String Play with Regular Expressions”**.

**Homework #3 (two parts, A and B):** (A) using color (pencils, hi-liter) annotate one page of DNA sequence, e.g., use colors to highlight certain patterns that you observe (e.g., red for any direct repeats, green for mirror repeats); (B) on a separate page, come up with a unique Question that requires a regex when searching individual words in an English dictionary. Follow the format in the book, that is, include (i) the Question, (ii) the RegEx one could use to answer the question, and (iii) some of the words that match with the RegEx (i.e., your answers when using an English dictionary). **Due in class, Tues. Sept 11th.**

**Readings:**

---

**Week 3 ---- Chapter 3**

**Sept 11th TUES**
Homework #3 is due.

Intro to Perl: **“hello DNA Land”**
Good practices when printing output, using variables, and built-in functions

Specifications “Specs” for Program #1 “String Play” and instructions about completing the program. Introduction to “genic” and “intergenic” regions and codons.

**Sept 13th THURS**
csLab – working with Perl’s string functions:

- index, substr, reverse, lc, uc
- and string operators
  - tr and concatenation (.)
Week 4 ---- Chapter 5 and 8

Program #1 due electronically by Monday 17th (with 5 extra hours allowed if you want to work all night and turn it in by 5 o’clock in the morning of the 18th.)

Sept 18th TUES
Good practices of using arithmetic operators, precedence, math functions, and formatted output with printf
Using a subroutine written by someone else (e.g., readInDNA)

Specifications “Specs” for Program #2 “Chargaffian Counts” and instructions about completing the program.

Sept 20th THURS
Guest Lecture: “DNA Sequencer”
Professor Shawn McCafferty, Biology

Week 5 --- Chapters 6 and 7

Program #2 due electronically by Monday 24th (with 5 extra hours allowed if you want to work all night and turn it in by 5 o’clock in the morning on the 25th).

Sept 25th TUES
Good practices of using if-else; using if and index together;
Using subroutines revisited

Specifications “Specs” for Program #3 “Gene Finder” and instructions about completing the program.

An introduction to transcription and translation.

Hand out reading (essay due Oct. 5):
“Genetics and the Shape of Dogs.”

Sept 26th WED -- 5:30pm, Hindle Auditorium
The Norman Johnson Lecture by Andy van Dam of Brown University
“When is the Pen Mightier than the Keyboard?”

Sept 27th THURS
csLab – “Going Back for More” with if-elsif-else, index, subroutines
Week 6 ---- Chapters 6, 7, and 12

Program #3 due electronically by Monday 1ST (with 5 extra hours allowed if you want to work all night and turn it in by 5 o’clock in the morning on the 2nd.)

Oct 2nd TUES
while loops, greediness in regular expressions, commenting those tough regex

Specifications “Specs” for Program #4 “eLmer a Motif Finder” and instructions about completing the program

Introduction to gene regulation

Oct 4th THURS

csLab – Regular expressions revisited (in Perl code)

Oct 5th FRI – Wiki homework due

Week 7

Oct 9th TUES “Fall Break”

Oct 11th THURS
Guest Lecture: “Professor Teresa Celada, Philosophy

Week 8 ---- Chapters 11 and 13

Program #4 due electronically by Monday 15ST (with 5 extra hours allowed if you want to work all night and turn it in by 5 o’clock in the morning on the 16th.)

Oct 16th TUES

csLab -- BLAST Lab (Homework #6; due at the end of lab)

Specifications “Specs” for Program #5 “Fuzzy Olfactory Gene Finder” and instructions about completing the program

Olfaction and seven trans-membrane proteins (Part I)

Oct 18th THURS
Guest Lecture: Professor Mike Kahn, Statistics

Olfaction and seven trans-membrane proteins (Part II)
Oct 18th THURS continued
Sidewalk Chalk Art on the Dimple (Homework #7): Stake out a section of sidewalk somewhere around the dimple. Write in LARGE PRINT (1) a query, (2) a RegEx, and (3) a solution in large chalk on the sidewalk.

Oct 19th FRI (rain date Saturday morning, Oct 20)
Sidewalk Chalk Art due somewhere on the walkways around main Quad by 8am.

Week 9 ---- Chapter 9

Oct 23rd TUES
Olfaction and seven trans-membrane proteins (Part III)

Introduction to arrays and Perl’s split and join functions

Oct 25th THURS

csLab – “Going Back for More” – Practice with arrays

Hand out reading (read in preparation for Tue, Oct 30th class):
“Taken For a Spin: Scientists look to spiders for the goods on silk.”

Week 10 ---- Chapters 9 and 10

Program #5 due electronically by Monday 29th (with 5 extra hours allowed if you want to work all night and turn it in by 5 o’clock in the morning on the 30th.)

Oct 30th TUES
Introduction to Spider Web proteins (read associated article before this class)

Homework #8 (in lab): Using BLAST and the literature review tool, SCOPUS.

Nov 1st THURS
Homework #8 (Spider Webs) is due.

Sorting with arrays and hash tables

Specifications “Specs” for Program #6 “Building a Concordance” and instructions about completing the program

csLab – Practice with hash tables
Week 11

Nov 6th TUES
More hash tables and help on Program #6

Nov 8th THURS
Final Project Specification for Individual Projects
  What might you do?
  How will you present your results?
  How do you write the Methods section of a paper?
  What is expected of you?

Week 12

Program #6 due electronically by Monday Nov. 12th (with 5 extra hours allowed if you want to work all night and turn it in by 5 o clock in the morning on the 13th.)

Nov 13th TUES
Class time to search for appropriate datasets for your final project: Go to NCBI, select sequences, store them for future use.

Nov 15th THURS
Samples of written and oral presentations—an analysis of examples
  (If time permits: family tree and/or 3-D visualization of protein structures)

Week 13

Nov 20th TUES
Final Project Proposal: type-written co-authored Title, Introduction, and Methods
due by the beginning of class

Open lab time for individual and group help on final projects

Nov 22th THURS
Thanksgiving Break
Week 14

Nov 27th TUES
Guest Lecture: Professor Teresa Celada, Philosophy

Nov 29th THURS
Lab time for final presentations

Week 15

Dec 4th TUES
Oral Presentations on Projects

Dec 6th THURS
Oral Presentations on Projects

Program and paper are due at the BEGINNING of CLASS

Course Evaluations and Farewells
REFERENCES


