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ABSTRACT

This thesis presents several new approaches to the problem of creating a terrain

surface from contours on a regular grid. Previous solutions often generate surfaces

with several kinds of artifacts, most notably terraces. The solutions presented in

this thesis minimize the terracing effect while creating surfaces that are globally

accurate.

The first technique improves upon previous thin plate approximations. The

Intermediate Contours method creates additional contour lines in between the ex-

isting contours to alleviate the terracing problem. The Maximum Intermediate

Contours method extends this idea to the creation of an initial surface by contin-

ually computing intermediate contours. Because peaks can not be computed by

intermediate contours, a novel approach for computing such areas using Hermite

splines is presented. Gaussian smoothing is applied to smooth the final surface.

The second technique makes use of slope information in an initial surface

approximation to create “gradient lines.” These gradient lines are paths that follow

the steepest slope from local minima to local maxima. An interpolating spline is

fit along the paths to create a surface. Thin plate approximation techniques are

applied to produce the final, smooth result.

Finally, an interpolating spline method is presented which computes good

quality surfaces faster than the aforementioned techniques. Catmull-Rom splines

are computed in the horizontal and vertical directions to create an initial surface

which is then smoothed with the Gaussian smoothing function.

All of the surfaces created by the new methods are qualitatively analyzed. The

generated surfaces are also compared to current US Geological Survey standards.

Accuracy and smoothness criteria show that the surfaces computed by the new

methods are quantitatively superior than previous techniques.
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CHAPTER 1

It is slightly non-trivial, but not terribly non-trivial.

– Mukkai Krishnamoorthy

Introduction

Displaying information via two- or three-dimensional images is becoming increas-

ingly important in an era of ever-improving CAD/CAM systems, scientific visualiza-

tions of various kinds, sophisticated computer games, hyper-media, and even virtual

reality. Geographic Information Systems, or GIS, are no exception. Data pertaining

to the world around us is being collected at increasing rates. As the amount of

information multiplies, Geographic Information Systems are called upon to display

the myriad data in the context of geographic locations.

Over the years, there have been conflicting and diverse attempts at precisely

defining the term Geographic Information System. Although the main theme of

spatial data is omnipresent, ever-changing technology has brought about increased

robustness. In a fairly recent book, Dangermond gives this overview of a GIS [17]:

A simple definition is that a GIS is an organized collection of computer

hardware, software, and geographic data designed to efficiently capture,

store, update, manipulate, and display all forms of geographically refer-

enced information. (p. 11)

In Maguire’s opinion [56], which seems to combine most of the earlier def-

initions, a GIS can be thought of as a melding of three different “views:” map,

database, and spatial analysis. The map view enables the system to visually display

a map of a geographic location. The database contains information pertaining to

the same location. Finally, the spatial analysis view allows the user to find new in-

formation about the map in question, such as the size of some area or the elevation

1
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of a particular point. Depending on the user’s requirements, all three views may be

applicable to a GIS at the same time.

The “map” portion in most GISs are based on a “layering” system. The base

layer is a two-dimensional map of some geographic location. Data stored in the

database, such as population density, soil type, or utility locations is layered over

the base map in different colors, shades, or patterns which serve to differentiate

the information. This is how multivariate visualization is achieved in packages such

as MapInfo [57] and Arc/Info [26]. In addition, a user may wish to view the

geographic location in three dimensions, as can be done in a system such as GRASS

(Geographic Resources Analysis Support System)[1]. A three-dimensional surface

map of an area is usually stored as a grid of elevation points called a Digital Elevation

Model (DEM). Using a DEM, a user can view an area in three dimensions, giving

a clearer understanding of the problem. The term Digital Terrain Model (DTM) is

also widely used, but often implies other attributes in addition to elevation data.

1.1 Importance of Digital Elevation Models

Aside from the purely aesthetic value of observing terrain in three rather than

two dimensions, there are many scientific and practical uses for DEMs, including

[11]:

• The need to store digital topographic maps. In an age where almost everything

is stored in digital format, it is obvious that maps need to be stored in this

manner as well. This allows such maps to be used not only in pure GISs, but

in other computer applications, such as games, atlases, and encyclopedias.

• Problems in road design and similar civil and military engineering projects.

Viewing a location in three dimensions may make it easier to determine the

path of a road through hilly or mountainous terrain, for example.

In January of 1998, a huge ice storm ravaged upper New York state and parts of

Canada. WAMC [84] reported that MapInfo donated software and technical

support for the National Guard which was frantically trying to restore power

in large portions of New York. The MapInfo software was used to create
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maps of specific problem areas, making it easier for crews to locate them.

Three-dimensional maps may have helped the crews to visualize the terrain

and to determine the kind of equipment necessary to reach remote areas and

to complete repairs.

• Realistic display of landforms for such diverse areas as pilot training, weapons

guidance, and landscape architecture.

• Statistical analysis and comparison of different kinds of terrain.

• Computing slope maps, aspect maps, and slope profiles that can be used to

produce shaded relief maps and aid in other geomorphological problems. For

example, DEMs have been shown to be useful in mapping flood areas [55].

These maps can be used to predict which areas may be adversely affected by

high water.

• Providing a background for displaying thematic information such as is done

in current Geographic Information Systems in two-dimensions.

• The analysis of cross-country visibility. For example, a ski area in Oregon

wanted to expand its accessible terrain. Environmental groups were concerned

that the new ski trails would adversely impact a hiking trail nearby. A three-

dimensional rendering of the ski area as viewed from the hiking trail allowed

the designers to incorporate the environmentalists’ concerns. As another ex-

ample, a DEM can be used to help determine how much of the surrounding

area will be able to see particular structures, an important consideration in

building a housing development near undesirable towers or buildings.

• The elevation data can be replaced by other continuously varying attributes,

thus allowing the DEM to represent “surfaces” of items such as travel time,

cost, population, etc.

Once data is collected or computed and stored in a DEM, other useful infor-

mation can be derived, including profiles, volume estimation, contour maps, and
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drainage maps, among others [11]. Furthermore, DEMs are not limited to stor-

ing elevation values; they can be used to store any kind of spatial data, such as

range data collected from any kind of object, measurements of real-world items in

three-space, medical imagery, and so forth. In fact, they can be used to store any

grid-based phenomena that a user may wish to view in three-dimensions.

1.2 Motivation

There are several factors which motivate this research. The first and foremost

aspect is that there exists a dearth of accurate DEMs available to the GIS user

and researcher. DEMs that are available are often computed using crude averaging

methods giving only a very general idea of the topography of a particular area. The

United States Geological Survey (USGS) is currently creating a new database of

DEMs; however, this project will take many years.

A second motivation is that DEMs are enormous, making storage of such

maps a costly proposition, even with the advances in memory performance. One

test case, an uncompressed 800 × 800 DEM of Mt. Washington in NH, requires

about 5 megabytes of memory. An equivalent 800× 800 file containing only isolines

(contour lines) requires 1.4 megabytes of space. By storing only the isolines in a

non-gridded format, the storage requirements can be reduced still further to about

12 kilobytes. Note that memory requirements are relative to the type of terrain

represented. Very steep terrain contains more isolines per unit area; flatter terrain

contains fewer isolines. In compressed form, the ratio of the space required for the

isolines to the space requirements of the DEM is roughly the same; using the gzip

utility, the initial data file takes about 43 kilobytes of memory, while the DEM

requires about 1.7 megabytes. Better compression techniques for elevation data can

be found in work done by Franklin [35].

One solution to both problems is to re-create the three-dimensional surface

from only as much data as necessary. There exist many elevation-based data sets,

notably Digital Line Graphs (DLG) of the USGS, and other scattered data formats.

Currently, DLG files are available for most areas of the country. Among other things,

a DLG stores terrain elevation information in conjunction with line segments which
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form contour lines. Taken together, the isolines form a complete contour map. Such

a contour map can be used to interpolate or approximate a surface from the observed

elevation values. If there exists a good method for converting such isoline files to

accurate DEMs, a given GIS or other mapping system could store many more maps

in the same amount of memory. In addition, contour line data is used to model many

other phenomena, such as soft tissues in medical imaging. The problem, then, is to

produce good quality DEMs from available contour line data.

Computer processors are becoming faster and faster. Therefore, users expect

results faster than ever before. A secondary issue is that computing a DEM should

take a reasonable amount of time. Some current methods may take several hours

on powerful machines to compute a surface. A system that is highly accurate but

takes an inordinate amount of time may be less useful to a user than one that runs

faster with perhaps a bit more error.

1.3 New Interpolation/Approximation Techniques

There are many techniques that have been used to interpolate or approximate

a surface from elevation or, equivalently, range data. However, many of these algo-

rithms are not firmly grounded in mathematical or physical theory. Furthermore,

the resulting surfaces are often not quantitatively or qualitatively accurate.

In this thesis, we present two new enhancements to the minimum curvature

surface which produce quantifiably better DEMs. The method of minimum curva-

ture is one accepted method for producing DEMs. A partial differential equation

(PDE) which models a thin plate being draped over the data set is used to create

such a surface. By itself, this technique does not give adequate results, but it forms

a solid, theoretically sound basis for our work. We also present two new and more

direct techniques which produce similar results but do not need the solution to the

partial differential equation and its attendant high computational costs. Figure 1.1

shows a flowchart which portrays the entire DEM construction system and all its

possibilities.

The first technique, called Intermediate Contours or IC, produces a better

surface by interpolating isoline data to produce more elevation points for subsequent
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Figure 1.1: Flowchart showing showing all interpolation and approxima-
tion alternatives.

thin plate surface computations. These new elevations comprise new contours in

between previously known contour lines. The new “intermediate contours” greatly

improve the basic minimum curvature surface.

The second technique, uses some information inherent in contour lines to pro-

duce “gradient lines.” These gradient lines are interpolated paths which follow the

steepest slope between local minima and maxima. In so doing, these paths cut across

contours, giving better ridge lines and reducing other thin plate inadequacies. Note
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that intermediate contours can be used to create a better initial surface used for the

gradient lines computation.

Finally, we introduce two methods which compute DEMs directly from contour

data, without the need for any thin plate computations. Except for the initial surface

computation, both methods follow the same steps to the creation of the final DEM.

In the Maximum Intermediate Contours (MIC) method, the maximum number of

intermediate contours are generated to produce the initial, approximate surface. The

second algorithm employs one-dimensional splines which interpolate across contours

to form the initial surface. Neither method can interpolate peaks. These areas are

interpolated separately using Hermite splines. Other, small remaining gaps are filled

with inverse distance weighting. Finally, a common smoothing function is used to

achieve the final surface. Both algorithms are much faster than the thin plate

methods while producing good quality surfaces.

1.4 Organization of Thesis

In this chapter, we have given an overview of Geographic Information Systems

in general, and discussed the importance of Digital Elevation Models. We have

outlined briefly some new methods for computing DEMs from contour line data.

Chapter 2 explains the notion of minimum curvature and the use of the thin

plate PDE, and gives a historical review of reconstruction methods. The following

two chapters show how the basic thin plate approach can be improved. Chapter

3 gives the details of the Intermediate Contours (IC) method, while Chapter 4

explains the Gradient Lines method. The two methods which directly compute a

DEM without the need for thin plate computations, the Maximum Intermediate

Contours (MIC) and Fast Spline methods, are given in Chapter 5. In Chapter 6

we discuss how the input files were created and define the tests used to determine

a surface’s accuracy. The experimental results are shown in Chapter 7. In Chapter

8, we discuss the results and give some conclusions. The research contributions are

also reviewed in that chapter, as well as a discussion of future work. Finally, the

Appendix contains other methods that were investigated but that did not result in

acceptable DEMs.



CHAPTER 2

I could have substituted 1 for r at the beginning,

but then the result would not be as mathematically interesting.

– Boleslaw Szymanski

Review of Surface Reconstruction

Much work has been done in the areas of interpolation/approximation by the AI

vision and earth sciences communities. In vision, the problem often is referred to as

“surface reconstruction,” because sparse elevation or depth data is transformed to a

surface which will, hopefully, clearly show the underlying object or objects that the

data represents. Similarly, in the earth sciences, elevation data, often in the form of

isolines, is used to reconstruct the terrain surface that the data represent. The two

problems are extremely similar, but often on a much different scale.

2.1 Surface Reconstruction Using Partial Differential Equa-

tions

An important goal in the creation of DEMs from contour (or scattered) data

is that the resulting three-dimensional surface be smooth. The surface should not

have any unnatural dips, curves, or other strange anomalies. The viewer should not

perceive the underlying data points which were used initially to create the surface.

Partial Differential Equations (PDEs) can be used to model surfaces subject to

certain constraints. One such PDE is the Laplacian, or heat-flow equation:

0 =
∂2z

∂x2
+

∂2z

∂y2
(2.1)

8
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We can map elevations to temperatures, such that z represents elevations. If we

assume that contour lines are fixed at known temperatures and the surface conducts

heat uniformly, then each point on the surface will converge to some temperature

equilibrium. The temperatures can then be mapped back to elevations. Using finite

difference techniques, solving the PDE on a grid results in

0 = zi−1,j + zi+1,j + zi,j−1 + zi,j+1 − 4zi,j (2.2)

for elevation values not already known at location i, j. However, this method pro-

duces surfaces with severe terracing in between the contours, as shown by Wood

and Fisher [89]. A more robust PDE is one that models a thin plate which is draped

over the observed data points. It uses the principle of minimum curvature which

restricts the amount of bending in the plate. In its pure form, the thin plate will

pass through all of the points, resulting in a surface that is a true interpolation of the

observed points. In two dimensions, such an interpolant is also called the natural

bicubic spline. An advantage of a surface found by this spline is that it belongs to

C(R2); that is, the surface is continuous over the two-dimensional surface [70]. In

some cases, it may be desirable to let the thin plate pass near the observed points,

rather than through them. Such a process, also called a smoothing spline, produces

an approximation of the surface. An approximated surface may be more desirable

than an interpolated surface due to its smoothness. Indeed, Hutchinson and Gessler

conclude that exact interpolation of spatial data using thin plate splines is rarely

appropriate [47], and that smoothing is generally needed. Whatever the advantages

and limitations of the thin plate interpolation or approximation method, it is useful

to note that the techniques are incorporated into several GIS packages [88] such as

Surfer [79], GRASS [1], and SphereKit [78].

2.1.1 Thin plate equations

Given N data points, where i ∈ {1..N}, the differential equation that models

a thin plate is given by:
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fi =
∂4z

∂x4
+ 2

∂4z

∂x2∂y2
+

∂4z

∂y4
(2.3)

where fi is the force at position i, x = xi, y = yi, and z is the elevation at (xi, yi)

[9]. Note that if there is an observed elevation value wi at (xi, yi), then zi = wi.

Integrating twice over the region where the data values are given, R, and rewriting

using the notation where fxx means ∂2f

∂x2 , a surface interpolation of the data can be

found by solving:

0 =
∫

R

∫

(

f 2
xx + 2f 2

xy + f 2
yy

)

dx dy (2.4)

If an approximation is desired, then the computed surface must only pass near

known values. In such a case, care must be taken so that the surface does not deviate

too much from the known data values. Such an approximation can be modeled by

adding 2.4 to a function which minimizes the total energy E of a system. One such

function [48] is:

E2 =
n
∑

i=1

(zi − f(xi, yi))
2 + β2

∫

R

∫

(

f 2
xx + 2f 2

xy + f 2
yy

)

dx dy (2.5)

where β is a regularizing parameter used to achieve a smoother solution. Choosing a

small β results in a close approximation of the data, while choosing a large β results

in smoother solution [48].

In practical terms, if the data is in the form of a mesh of points (x1, y1) to

(xn, yn), and the boundaries are ignored, then using finite difference techniques, the

solution to the above equation 2.4 is the biharmonic equation [9]:
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0 = zi−2,j + zi,j−2 + zi+2,j + zi,j+2

+2(zi−1,j−1 + zi−1,j+1 + zi+1,j+1 + zi+1,j−1)

−8(zi,j−1 + zi−1,j + zi,j+1 + zi+1,j)

+20zi,j (2.6)

where each zi,j represents the elevation at (xi, yj). This equation can be regarded

as a neighborhood of points, with different weights (coefficients) assigned to current

values according to their distance from the center:

1

2 -8 2

1 -8 20 -8 1

2 -8 2

1

The boundary values at both the edges and the corners must also sum to 0. Thus,

there are similar equations for all boundary points (See [9] or [82]).

The method chosen to solve the biharmonic equation is iteration. Convergence

is achieved when the absolute change in all nodes is less than some ε value, typically

chosen to be 0.005. For most DLGs, which give elevation values in meters, this

has the implication that no computed elevation is changed more than 5mm in one

iteration. The most direct, sequential iterative method is the Jacobi method, where

finding each new point depends only on values found in the previous iteration [91]:

zp+1
i = zp

i−2,j + zp
i,j−2 + ... + 20zp

i,j (2.7)

where p = iteration.

Somewhat faster convergence can be achieved with the Gauss-Seidel method

whereby values of the current iteration, that is zp+1
i,j , are used whenever possible [91].

As the grid becomes larger, both the Jacobi and Gauss-Seidel methods become

prohibitively slow; for a grid of n × n points, convergence is achieved in time O(Ln2),
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where L is the number of iterations required. In [80], Terzopoulos contends that

L = nm, where m = 4 = highest order of partial derivatives, a figure supported by

Matheson [58]. This gives us a total time complexity of O(n6), a rather daunting

figure.

A method that speeds up the process by orders of magnitude is the multigrid

numerical relaxation approach. In very general terms, the idea is to find values of

the original, “fine” grid by reducing the problem to many smaller, “coarse” grids.

The solution to the smallest coarse grid is computed quickly and is then used to find

the solution of the next finer grid. This process repeats itself until the solution to the

original grid is found. The multigrid process is a major theme of Terzopoulos [80]

and, to a lesser extent, Smith [77]. Terzopoulos showed that multigrid relaxation

techniques significantly increase performance, found to be O(n2 log n) by Briggs

[10]. However, it is difficult to determine the true convergence factor, so Briggs used

heuristics and experimental results (on a rather small sized sample) to reach the

above conclusion. An explanation of the multigrid algorithm as applied in general

and a specific example (using the Laplacian) is shown in [65]. This has become

a very popular method, sprouting many tutorials such as those from Briggs [10]

and Rüde [68], among others. Douglas [20] points to tutorials, bibliographies, and

software.

2.1.2 Discontinuities

A major source of difficulty in the production of smooth and accurate surfaces

from sparse data using the thin plate approach is that of discontinuities in the

surface. For example, one kind of discontinuity in terrain may be described as a

significant elevation drop between two flatter areas. This is often the case near cliffs

or canyons. Such a discontinuity is shown in Figure 2.1, where the vertical bars

represent elevations of a profile at regular intervals. The implied discontinuity is in

the problem that there is a flat surface connecting the higher elevations and another

flat surface connecting the lower elevations, with no clear indication of the desired

surface in between. Using the general thin plate method, the resulting surface is

shown as the dark line. This curve exhibits behavior that is known as the Gibbs
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Figure 2.1: Profile showing discontinuity and resulting thin plate surface
(dark line)

phenomenon [29]: there is significant “overshoot” on either side of the discontinuity.

This is the result of the method attempting to minimize the curvature in areas where

the curvature is naturally high. This problem has been handled in various ways (see

Section 2.2).

2.1.3 Interpolation Problems Specific to Contour Data

Although the thin plate equation has been used in the surface reconstruction

problem, one obstacle is unique when using contour line data as opposed to sparse

data. In simplest terms, solving the thin plate equation can be stated as finding

the weighted average of a node’s neighbors. Consider contour data depicting hilly

or mountainous terrain. Furthermore, consider a contour line A with a certain

elevation, and a second contour line B which is at the next lower elevation, as

shown in Figure 2.2. Typically, contour B will have more data points than contour

A, because mountains get smaller (i.e., contours enclose less area) as they get higher.

This raises the problem that if one attempts to find the elevation of some point p

which lies between A and B, then the number of elevation values whose magnitude

is near the elevation of B is greater than the number of elevation values whose

magnitude is near the elevation of A. Using Equation 2.4 to find elevation values

between two such contours results in a “terracing” effect; that is, there are more

lower elevation values than higher values, creating a surface whose average elevation

is closer to B than A. This phenomena worsens as the horizontal (flat) distance

between successive contour lines increases. This behavior is intuitive, as a thin

plate tends to flatness.
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Figure 2.2: Profile showing terracing problem with thin plate surface

A second problem involves the digitization process. Assuming that the base

map is accurate, there are obvious problems when superimposing curves onto a

regular grid. Curves will often exhibit aliasing problems, meaning that there may

be several pixels in a small area depicting a curved portion of a contour. Because

all of these pixels come from the same contour, they will all represent the same

elevation. It is difficult for any curvature minimizing equation to interpolate such

areas smoothly. The result is that there will be tiny flat spots in the areas where

such pixels were grouped.

2.2 Survey of Thin Plate Methods

The idea of using a thin plate draped over observed data values to approximate

a surface is not new. Early uses tended towards terrain reconstruction, whereas the

method was later employed often in machine vision applications. A good overview

of some of the early uses of thin plate (and other) splines can be found in a survey

by Schumaker [70]. Mathematical descriptions can be found in a paper by Meinguet

[59].
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2.2.1 Use of Thin Plate Equations in Geology

One of the early attempts at applying the thin plate idea to geological prob-

lems was by Briggs [9] who used the notion of minimum curvature to approximate

contours from scattered data; Equation 2.4 was taken from this paper. Briggs’s

work lead Swain to implement a FORTRAN version in 1976 [77]. Franke [31] also

applied the thin plate interpolation on scattered data. Dyn [23] described how a

bell-shaped basis function can be used to smooth thin plate surfaces, but did not

show any results. However, Enriquez et al [25] showed that thin plate interpolation

produces maps of high quality if the data are nonequispaced.

Some time later, Sandwell [69] proposed a simpler algorithm, using Green’s

functions instead of bicubic spline interpolation. His claim is that the method

still finds a surface with minimum curvature but is more flexible because slope

measurements can be used instead of elevation data. The method has limitations,

however; Sandwell notes that it is not particularly efficient. More importantly, the

method becomes numerically unstable the larger the ratio of the greatest distance

between two points to the least distance between two points becomes. This is a

severe limitation, which Sandwell dealt with by ignoring closely spaced points. This

may not be a viable solution if such points are accurate and should be included in

the solution. This problem may not be as important in Sandwell’s case, as he used

the method to interpolate satellite data where, because of the nature of such data,

ignoring a few data points would not impact the results in a substantial way.

A more recent development is the addition of tension to the biharmonic equa-

tion by Smith and Wessel [77]. One problem with the direct application of the

minimum curvature method is that Gibbs phenomena may be observed between

some data points. Smith and Wessel counteract this by adding tension to the ends

of the thin plate, thus “flattening” the surface somewhat. The resulting equation is

E =
∫

R

∫

(

Txx

∂2f

∂x2
+ 2Txy

∂2f

∂x∂y
+ Tyy

∂2f

∂y2

)

dx dy (2.8)

where Txx, Txy, and Tyy represent horizontal forces per unit vertical length.

The tension parameter has several advantages: it can be adjusted to satisfy
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Figure 2.3: Profile showing surfaces with no tension (dark line), some
tension (light line), and infinite tension (dashed line).

the user’s requirements, the computed surface still honors the observed data, and it

is very easy to implement as it is simply changing the weight of four of the nodes in

the computational neighborhood, shown as the underlined values:

1

2 -8 2

1 -8 20 -8 1

2 -8 2

1

The result is that unwanted inflections between sharp elevation changes are

minimized, at the expense of localization of the curvature around the data points.

This can be seen in Figure 2.3. It was found that this method is helpful in certain

situations, such as bathymetric data that contains shelf breaks. The bulge (due to

Gibbs phenomena) near the top of the shelf is significantly reduced [77].

Most recently, Powell [64] discusses computational difficulties in interpolating

many isolated points and presents an iterative method for up to 105 points. The

rather small number of points is a major shortcoming of the method.

2.2.2 Use of Thin Plate Equations in Machine Vision

At the same time that research was on-going in the earth-sciences community,

similar, relevant work was being done in the area of machine vision and surface

reconstruction; see the survey paper of Bolle and Vemuri [4] for a discussion of some

of the various methods. Although many results seem to overlap those described

above, there appears to be no direct link between the two groups. Much work in
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Figure 2.4: Profile showing surface with springs

the vision area was done by Grimson [40, 41] in the early 80’s. He presented a

theory of visual surface interpolation given stereo range data. He minimized the

“quadratic variation” of the surface; this quadratic variation is exactly the thin

plate equation, which he solved in a similar manner to Briggs but which resulted in

different coefficients [41]:

2

4 -16 4

2 -16 40 -16 2

4 -16 4

2

A surface is computed by using his “gradient projection algorithm,” which, for each

iteration, computes a scalar value which is added to the current surface approxima-

tion.

Although Grimson’s algorithm produces a thin plate surface, it is computa-

tionally slow and does not handle discontinuities. In [80], Terzopoulos addresses

the efficiency problems, by using the multigrid approach to solve essentially the

same biharmonic equation as Grimson. However, a smoothness term is added to the

quadratic functional, as shown as the β term in Equation 2.5. This term models

“springs” at the top of the elevation values, allowing the thin plate to bend in a

more natural way, reducing Gibbs effects but creating an approximation instead of

interpolation. Figure 2.4 shows how the springs influence the thin plate near a depth

discontinuity.

Terzopoulos continued his research in this area with two more works [81, 82]. In

these later papers, he addresses the problems of depth and orientation discontinuities
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in detail. In simplest terms, he gives a three-fold solution. In areas where there are

no discontinuities, the problem reverts to the normal thin plate solution. Where

there are depth discontinuities in the surface, defined as occluding contours, the

idea is to “break” the plate at the discontinuity, resulting in a piecewise continuous

solution. Finally, orientation discontinuities, defined as surface creases, are handled

by substituting a flexible membrane for the thin plate. The membrane allows for

more bending in such areas. The controlled-continuity stabilizer given in [82] is

ε(v) =
∫

R

∫

ρ(x, y)
{

τ(x, y)(v2
xx + 2v2

xy + v2
yy)

+[1 − τ(x, y)](v2
x + v2

y)
}

dx dy (2.9)

where ρ(x, y) and τ(x, y) are continuity control functions, the former for depth

discontinuities and the latter for orientation discontinuities. The term v2
x represents

(

∂v
∂x

)2
. By varying the values of ρ and τ , the surface can behave as a membrane at

one extreme or as a thin plate in complete tension at the other extreme (the tension

parameter is very similar to that reported in [77] later). The surface therefore

has differing orders of continuity depending on the presence of discontinuities. A

major problem of this approach is that the discontinuities must be known a priori.

Terzopoulos handles this by comparing data from multiple sensors [4]. Such data is

typically not available for the terrain modeler in GIS.

Jou and Bovik [50] point out that multigrid techniques, already quite diffi-

cult, become more so when discontinuities are accounted for. More information

must propagate between the different grid levels, minimizing performance gains.

They suggest using constraint expansion to compute a much improved initial sur-

face while accounting for discontinuities. A better initial approximation can yield

significant performance increases. Furthermore, detected intensity edges and the

square Laplacian are used to locate discontinuities in the initial surface.

Another approach that deals with the discontinuity problem is given by Sinha

and Schunck [48, 74, 75]. They use a two-stage process, where a surface g is first

constructed based on the given data. Then g is used to generate regular data which
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is used to construct the final surface f [70]. They use a moving least median squares

regression (MLMS) method on scattered data to complete the first stage. To find

the final surface, they employ a weighted bicubic spline:

E =
∫

R

∫

ω(x, y)
(

f 2
xx + 2f 2

xy + f 2
yy

)

dx dy (2.10)

where

ω(x, y) =
β2

1 + ‖ρ(x, y)‖2
(2.11)

The smoothing term β is the same as in Equation 2.5, while the value of

ρ(x, y) is the gradient, making the weight ω adaptive; it is large when the data is

flat (small gradient), allowing the surface to be smoother. In steeper regions (large

gradient), ω becomes large, which corresponds to a surface with many steep bends

and pitches. The weight is found in the first stage of processing, so efficiency in the

second, more computationally intensive stage, is not compromised. Obviously, this

too is a surface approximation rather than interpolation because this method allows

the surface to deviate from the observed data points.

A two-stage approach that also uses thin plate splines is described by Fang

and Gossard [27]. The first stage is the formation of a triangular web over scattered

data. Boundary and characteristic points must be known beforehand. A thin plate

approximation fills in the surface between each of the edges of the triangles.

2.3 Results Using Previous Thin Plate Methods

Although the methods described in Section 2.2 may produce adequate results

in some instances, they are not deemed sufficient for computing surfaces from con-

tour data. Except for one test case done by Terzopoulos in [80], all of the methods

above used scattered data for their input. However, when using contour line data

as input, the basic thin plate approach is not adequate because of the terracing

effect that occurs due to the large discrepancy between the number of data points

at one elevation and the much lower number of points at the next higher elevation.
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For example, consider the synthetic contour map shown in Figure 2.5, a 257 × 257

raster file containing contours with 20 unit intervals. The normal thin plate inter-

polation method produces the surface shown in Figure 2.6. One can see easily the

terraces between contours and some Gibbs phenomena near the highest contour of

the smaller hill. The small, vertical “ripples” in the steep area are the result of

digitization errors due to aliasing of the contours’ curves. The thin plate method

simply can not smooth this out because there are too many observed values which

are not allowed to deviate from their initial values.

Figure 2.5: A synthetic contour map with interval = 20 units

Figure 2.6: Normal thin plate surface interpolation

To reduce the terracing effect, one may allow the surface to deviate slightly

from the observed values. If care is taken, the resulting surface fit is close to the

contour elevations, and the terracing effect is diminished somewhat. Note also that

this method greatly reduces the problems due to digitization errors; the steep sec-
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tions are now smooth. Allowing β = 0.5, which translates to allowing the observed

value to deviate by one-half the distance to its newly computed value, the resulting

surface for the synthetic data is shown in Figure 2.7. Although the surface is much

smoother than the strict interpolation shown previously, some of the details are

lost. Furthermore, the method has less effect as the distance between consecutive

contours increases.

Figure 2.7: Thin plate surface approximation with β = 0.5

The use of tension has been shown to alleviate some types of terracing prob-

lems. It also affords a surface interpolation rather than an approximation. However,

tension tends to flatten the tops of peaks and sometimes actually accentuates the

terracing problem. The surface resulting from using tension is shown in Figure 2.8.

As predicted, the tops of both hills are flat and the contours are easily seen. As

the tension is increased, these effects become even more noticeable. Lastly, in ar-

eas where consecutive contours are convex, the surface actually tends to be pulled

inward, towards the interior of the contours, much like a cloth object would be if

stretched taught over two curved shapes.

Figure 2.8: Thin plate surface interpolation with tension
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2.4 Review of Non-PDF Surface Reconstruction Techniques

There are many other interpolation and approximation methods available for

creating terrain surfaces. Whereas the previous section detailed interpolation and

approximation techniques based on the physical model of a thin plate, there are

many procedures which may be called “manual methods,” in the sense that they

arise from processes developed by cartographers [85]. As these methods evolved,

the computer allowed more data to be used in the reconstructions and more com-

plex procedures to be implemented. Other techniques come from the disciplines of

Computational Geometry and Computer Graphics. The survey by Schumaker [70]

gives a description of many interpolation and approximation schemes using scat-

tered data. Gold [37] describes methods for use in GIS, as does the paper of Weibel

and Heller [86]. The latter also notes some of the problems specific to contour data,

and gives a very brief summary of some of the more successful methods. They also

note that no interpolation method can be called “best” in all cases. Finally, Franke

[30] tested some of the earlier interpolation methods.

Jones [49] outlines several methods for contouring geologic surfaces. The eas-

iest way to calculate a node value is to compute the weighted average of its neigh-

bors. However, this simplistic solution can lead to terracing and furthermore can

not compute an elevation that is greater or less than the greatest or smallest data

elevations, respectively. Computing peaks from contours is obviously an impossibil-

ity. Another method discussed by Jones is one in which functions are fit to selected

points, thereby incorporating data trends. New elevations are interpolated from the

function at the desired location.

Several approaches rely on first finding a set of data points near the location

in question. These natural neighbors are found by Sibson’s methods [73]. A simple,

popular interpolation using natural neighbors and found in many GIS packages is

inverse distance weighting. As described by Watson [85] and Heine [44], the elevation

at a particular point p is found by averaging its neighbors, where each neighboring

value is weighted inversely proportional to its squared distance from p. For N = n×n

values:
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F (x, y) =
n
∑

i=1

n
∑

j=1

f(xi, yj)/di,j
∑n

i=1

∑n
j=1 1/di,j

(2.12)

In practice, the distances are often squared. For practical and accuracy reasons,

the number of data points considered in the summation is usually bounded by some

neighborhood window around p [44].

There are several problems to this approach. The surfaces will be discontinuous

at data points which tend to form peaks or valleys. Furthermore, the method suffers

because of clustering effects. Consider Figure 2.9. It shows two consecutive contours,

A and B. The point to be interpolated is shown as p. Because there are more data

values along contour A that are closer to p, the interpolated elevation of point p

will be biased towards the elevation of that contour [44]. An addition to the basic

inverse-distance weighting method is to divide the window into four quadrants [44]

with p in the center, as shown in Figure 2.10. An equal number of points from

each quadrant is chosen to calculate the value of p, reducing the clustering effect.

However, because contours can cross several quadrants, as shown in the figure, the

calculated elevation is still prone to error.

Figure 2.9: Example of clustering
problem

Figure 2.10: Quadrants added to
reduce clustering effect

A more complicated weighted averaging method is described by Franke [32].

Weighted local approximations are described by:

F (x, y) =

∑n
k=1 Wk(x, y)Qk(x, y)
∑n

k=1 Wk(x, y)
(2.13)

where W is a weight function depending on distance and Q is a quadratic
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function which must pass through the point. Together, these functions are called the

Modified Quadratic Shepard’s Method (Schumaker [70] described Shepard’s Method

as well). Franke added conditions that allow for discontinuities in the surface by

detecting faults or creases in the data.

A similar but more robust technique is kriging, where the weights of the neigh-

bors are determined by statistical methods, using distributions found in the sample.

This is a method with a long history, dating back to a paper by Krige in 1951.

There are many references that describe the method, among them David [18], Jones

[49], Dubrule [21], and Oliver and Webster [61]. It is used in several GIS packages

[88], including Arc/Info [26] and DOS Surfer [79], both of which suffer from

certain parameter constraints, Geo-EAS and GEOPack, both from the EPA, and

GSLIB from Stanford. The basic formulation is:

F (x, y) =
n
∑

i=1

n
∑

j=1

λi,jf(xi, yj) (2.14)

where λi,j are the weights and are chosen such that they sum to one and, additionally,

minimize the estimation variance. Dubrule notes that kriging and thin plate spline

interpolation are essentially equivalent, the difference being that kriging adds the

covariance and a degree of trend to the equation. Thus, kriging should be a better

interpolation method because it forces the computed surface to more accurately

follow trends in the data, a hypothesis that is supported by [21]. This immediately

brought about a letter by Philip and Watson [63] who claim that Dubrule’s data

inherently made the kriging surface more accurate and that the method of kriging,

in general, is not a more accurate method than some spline methods. Dubrule

responded with [22], in which he writes that he was only illustrating that kriging

can be better. An interesting excerpt from page 729 is:

Kriging, by minimizing the estimation variance, is designed to provide

estimates which are as close as possible to the actual values. Spline

interpolation, by minimizing the total curvature, is designed to provide

maps which have nice cosmetic properties.
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As discussed in previous chapters, it is obvious that splines alone are not

sufficient in creating good surfaces. Similarly, Philip and Watson show that kriging

is not always the best interpolating method either. In any case, none of the methods

were tested with contour data, which, as shown before, introduce different problems

to interpolation methods.

Just as kriging is theoretically better than minimum curvature methods be-

cause more information is used in the interpolation, so too is the case with a blended

gradient method that Watson espouses [85] because it uses gradient information in

addition to elevation data. This method is based partly on a neighborhood-based

linear interpolation. A linear interpolation of data points does not preserve continu-

ity across observed values; rather, peaks or pits are formed around them. In order

to smooth the surface, the gradients are also computed for each of the neighborhood

points. Since there is no surface from which to compute the gradients, these must

be estimated using any of the methods shown in [85]. The final surface is found by

“blending” the interpolated elevation values and the gradient estimates as a Boolean

sum1. A Boolean sum is defined as the sum of the elevation values and projected

gradients minus their difference. The inclusion of the gradients allows the surface

to better follow the slope near the data points, which allows the surface to be more

continuous around such points. Much like kriging, the resulting surface is accurate

and stable because it is not dependent on only one data set.

Another area of research involves the triangulation of the surface. Keppel [51]

triangulates between successive contours to compute a three-dimensional surface.

The correctness of the surface depends on the number of triangulation points taken

from each of the contours. Furthermore, there is no provision for additional tri-

angulation between contours, which results in planar patches joining each contour.

There is also no provision for preserving continuity at the contour itself, yielding

abrupt changes in slope at each contour. Christensen [15] triangulates contours to

create new elevation lines in between existing contours. This is similar to the central

idea of Intermediate Contours, explained in Chapter 3. In Christensen’s approach,

however, several assumptions are made which may not be viable if real contour data

1Watson’s term in [85].
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is processed. One of the assumptions is that all input contours are distinct and

without gaps. Because of digitizing errors, contours may blend together or have

other properties that may make it difficult to distinguish one contour from another.

Adjacency relationships are also assumed, which may also be difficult to ascertain.

Perhaps problems such as these precluded the author from showing any results from

large portions of a real contour map.

A Triangulated Irregular Network (TIN) is a system designed by Peuker et al

[62] and first implemented by Franklin [33] for DEMs that avoids the redundancies

of the rectangular grid method. The TIN is a terrain model employing triangular

facets perhaps based on a Delaunay triangulation of the observation points. Because

there is no notion of “fineness,” a TIN can be made to be more accurate in areas of

complex relief, such as ridge or stream lines. A TIN can be created using Franklin’s

software [34].

Agishtein and Migdal [3] show that Gaussian interpolation is a viable tech-

nique, but only if local data is used. Thus, they break the surface into triangles

to form a TIN, and then interpolate. Visually, however, their results seem rather

unnatural. Garcia et al [36] also used a TIN on contour data, but found that tri-

angles are sometimes horizontal if all three vertices are on the same contour. This

technique is used in the Arc/Info TIN module [88]. A related method is to com-

pute an interpolation using a Voronoi diagram [38]. A test point is inserted into

the diagram, and the areas its Voronoi polygon steals from its neighbors are used

to weight those neighbors’ elevations. The method reduces some discontinuities.

There are few algorithms that explicitly use contour lines as input. The sim-

plest methods find the average between two linearly interpolated profile lines, one

profile oriented N-S, the other E-W [67]. However, these orthogonal linear interpo-

lation methods often lead to overestimation because of the same problems that lead

to terracing when using thin plate solutions.

Yoeli [90] described a similar method in which he runs four profiles from the

desired point until an intersection with a contour line occurs. The distance from

the original point is then used as a weight to compute the desired elevation. This

method fails in peak or shallow areas, because the computed average can not be
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above the highest contour elevation or below the lowest contour elevation.

A better method, called the sequential steepest slope algorithm, initiates an

octant search to find the line of steepest descent through the point in question and

neighboring contour lines. The final linear interpolation takes place on the selected

line, using the elevations found on the two closest contours which intersect the line

of steepest descent [54]. Although this method produced adequate results in most

cases, additional information is necessary in some valley and ridge areas. If peak

elevations are not given, such a linear interpolation is unsufficient, yielding a flat

surface to the top of a hill. In such cases, additional processing is required. Clarke,

Gruen, and Loon [16] describe a similar method but which instead computes a cubic

interpolation along the line of steepest slope. The additional elevation points can

improve peak areas that do not include spot heights. Overall, however, they report

similar results from the two methods.

The aforementioned algorithms require the direction of steepest slope. The

slope is often computed using the spatial derivative as described by Carter [12].

The equation is:

Slope0 = ArcTan

√

(

∆Zx

∆X

)2

+
(

∆Zy

∆Y

)2

(2.15)

Although seemingly straightforward, the problem is choosing the ∆y (rise) and ∆x

(run) values. In using gridded data, a natural method is to choose the rise and run

values in each of the eight directions. The steepest slope can then be found easily.

One method that fits splines to contours is described by Dierckx et al [19].

They sample the original contours to generate a set of data points which are used as

knots in their splines. Interpolating splines are computed from each closed contour

and fit to the knots in conjunction with a parameter that determines the closeness

of the fit. This method may be difficult to apply to geographic problems because

map contours are very large and may not be closed within the area in question.

Furthermore, the method does not use all of the contour data points, choosing only

a small set as knots for the splines. This will create a surface that, in some areas,

be far removed from the underlying data.
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Huber [46] describes a method to improve a contour to DEM algorithm by

detecting ridges and valleys. Once detected, additional elevation points are interpo-

lated along the ridges or valleys and added to the original data set. The contention

is that these points significantly improve the surface interpolation using a wide range

of algorithms. However, Huber does not show any resulting surfaces.

Another approach to the interpolation problem is to find an equation that

will model the entire surface. Hardy [43] uses this approach, finding an equation

from contour data by choosing specific important points such as local maxima, local

minima, saddle points, and the like. Although the method may work for simple

surfaces, in most cases the approach will find an equation that models the surface

poorly because of its generality; most of the original data is ignored. As shown in

[43], the derived surfaces show much less detail than the original contour maps, and

in many cases, show erroneous contours.

2.5 Summary

While there are many interpolationa and approximation techniques, the com-

putation of accurate surfaces is still an unresolved problem. In general, PDE ap-

proaches produce smooth surfaces, but have a tendency to produce terraces. If the

terraces are reduced, often other errors are introduced. PDE methods also can be

quite slow. On the other hand, PDE methods are based on theory, such as the

bending properties of a thin plate. Non-PDE methods are sometimes more ad-hoc,

such as inverse-distance weighting or similar weighted-average techniques. As such,

they produce generally poor surfaces. Of course there are some non-PDE methods

that are more theoretically grounded, such as kriging, which is grounded in statis-

tics. No matter what the method, however, there are very few examples of any

technique applied to contour data, which seems odd because of the abundance of

such data. Furthermore, in the few cases that do use contour data, there is almost

a complete lack of analysis of the resulting surfaces based on quantitative methods

and especially comparisons to published USGS DEM data. Without such analyses,

it is difficult to establish the merits of many of the aforementioned techniques.



CHAPTER 3

The answer is either m or something else.

– Eva Ma

Thin Plate Surfaces with Intermediate Contours

In Section 2.1.3, we discussed the terracing problem associated with thin plate sur-

faces. The problem is shown graphically in Figure 2.2. A solution to this problem

using thin plate techniques is the subject of this chapter.

3.1 Intermediate Contours

Intuitively, a surface reconstruction algorithm should produce a better surface

when there exist more points in the initial data set. This notion is questioned

by Eklundh and Mårtensson in [24] in which they show that additional data often

adversely affect DEM construction techniques. However, their work focused on the

digitizing process applied to contours which were to be used to create DEMs. They

report operator errors in this process, yielding contour maps with deficiencies. Of

course, these deficiencies are passed to the DEM that is created from such contour

maps. However, if additional accurate data can be generated in a contour map

through more controlled, programmatic means, then the newly introduced data

values should help in producing a better DEM. This is the idea behind the notion

of computing intermediate contours. The intermediate contours are generated from

existing data before the thin plate surface is computed. The process described in

this chapter is shown in Figure 3.1.

A property of contour lines is that, in general, successive lines run approxi-

mately parallel to one another. There are several explanations for this:

• We are using contour maps that depict geographic locations. Out of necessity,

29
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Figure 3.1: Flowchart showing path of Intermediate Contours
method(dark line)

such maps are large scale (compared to a contour map of a human heart as is

used in medical imaging, for example). Maps typically have contour intervals

of between 20 and 100 feet. In such scales, small changes in local topography,

can not be adequately represented. It is impossible to find a large boulder or

small 15 foot cliff on a map.

• We presently have no means to perform enough precise measurements to com-
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pletely model geographic locations. It is therefore impossible to show every

nuance in a contour map. Cartographers must infer much of the topography

of a region from a scant number of actual measurements. They therefore use a

reliable contour to approximate neighboring contours which creates contours

that are parallel.

• Although the scale of most maps is fairly large, the contour interval is suf-

ficiently small to model larger phenomena such as large cliffs, canyons, and

bowls. Such natural phenomena usually do not occur so abruptly as to change

two neighboring contours radically. Even cliffs, for example, usually have a

slope curving upwards at the bottom so that contours depict a hill and then

gradually form the shape of the cliff as the elevation increases.

Of course, there are instances when successive contours change radically. The

bottom of a canyon may be flat with cliff faces rising steeply in many angles. How-

ever, only the bottom-most contour of the cliff is very different from the contour of

the canyon floor; the next higher contour will look very similar to the first. Simi-

lar phenomena can occur at the tops of rounded mountains or hills where the side

suddenly falls away.

Because contours run relatively parallel to one another, we can use the infor-

mation contained in consecutive contours to create a new contour line in between

the two original, observed contours. The new contour line has the property that

each point on the line is equidistant from the closest point of each of the two neigh-

boring contour lines. Furthermore, the intermediate contour line has an elevation

value that is exactly midway between the elevations of the contours on either side.

This is similar to what a human cartographer would do when drafting a contour

map.

The intermediate contour can give a good approximation of the data values

between observed contours. We explained in Chapter 2 that thin plate methods do

not work well when contours are spaced far apart, creating terraces in the process.

Intermediate contours can be especially helpful in such a situation, filling in data

points where there were none previously. The process can be repeated using newly

computed intermediate contours as observed data if it is decided that more can be
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Figure 3.2: A “bean” contour file Figure 3.3: Bean with additional
intermediate contour

gained by generating even more elevations. Once all of the intermediate contours

are obtained, the resulting data set can be interpolated or approximated using the

normal thin plate approach or a combination of those cited in Chapter 2. An

additional benefit of creating intermediate contours is that convergence of the thin

plate methods may occur sooner, thus reducing total computation time.

Consider Figure 3.2. It depicts two contours which form a hill in the shape of

a bean. This kind of shape is troublesome to minimum curvature methods because

of the large spaces at each end. Intermediate contours can help significantly because

elevation values are found in the areas where there were no data points whatsoever,

as shown in Figure 3.3.

The key observation to finding a point equidistant from two consecutive con-

tour lines is that the steepest slope from any point on a contour is defined to be

perpendicular to the tangent at that point. We compute a good approximation

to the perpendicular at a given point by finding the closest neighboring point on

the next higher or lower contour. A line is created to join the two points on the

consecutive contours, and the midpoint is found easily.

Computing an intermediate contour is done through the following steps:

1. Choose a point P1 from one contour line A

2. Find the closest point P2 on contour line B s.t. Belev > Aelev

3. Determine the midpoint Pmid between P1 and P2
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4. Calculate elevation: P elev
mid = 1

2
(P elev

1 + P elev
2 )

We wish to find the closest neighboring contour point such that there is a

clear path from the original point to the newly found position. This puts additional

constraints on finding the closest point on a higher contour. As the search progresses,

if a point with the same elevation is encountered, that is, a point on the same contour

line from which we started, the search is terminated in that direction. Similarly, the

search is also terminated in the appropriate direction if a contour of lower elevation

is encountered.

We employ Bresenham’s circle algorithm [29] to find the closest point P2 from

P1, although this may not be the optimal search technique. From P1, circles with

successively larger radii are generated until the circle contacts a point P2 which has

an elevation value higher than P1’s. The circular search is then terminated and

the midpoint computed. In the case that there does not exist a higher contour line

nearby, the maximum distance to search can be estimated by computing the average

distance between contour lines when the data is initially read in. Bresenham’s

algorithm only computes one-eighth of the circle, the other arcs being mirror images.

If an invalid contour is crossed (one of the additional constraints), the search is

discontinued for the arc of the circle in which the point is found. Other methods

can be used in place of Bresenham’s algorithm to find the closest neighboring point,

but it may be difficult to enforce the above constraints. Voronoi diagrams were

considered, but the modifications to the algorithm to find points with differing

elevations proved very complicated.

The entire algorithm can be repeated using the newly computed contour as

observed data lines in successive iterations.

3.2 Problems with Intermediate Contour Generation

A problem arises when using data taken from the natural world. Although

successive contours, in general, are parallel, there arise situations where they are

not. Figure 3.4 shows one such situation. If we assume that the contour on the right

represents a lower elevation, then the algorithm described above behaves predictably

and produces an intermediate contour as shown in Figure 3.7. However, if the
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Figure 3.4: Two non-parallel contour lines

Figure 3.5: Initial intermediate
contour; right contour is lower

Figure 3.6: Initial intermediate
contour; right contour is higher

elevation of the right contour is higher than the left, then the situation shown in

Figure 3.8 is produced. Clearly, a good intermediate contour is not computed by

the algorithm in this case.

The problem shown in Figure 3.7 can be summarized as follows. In most

situations, contours are convex; that is, they curve towards the middle of the hill

or mountain. However, Figure 3.8 shows a situation which is similar to a bowl or

ravine. In such cases, the curve of the contour is concave, curving outward from

the center of the mountain. Finding the intermediate contour by following our

algorithm is not sufficient for such areas. In these cases, the intermediate contour

can be found after finding the farthest higher point, or, conversely, the closest lower

elevation, instead of finding the closest higher contour as was described previously.

We employ a second pass of Bresenham’s circle algorithm, this time searching for

the closest lower contour, to get an approximation of the intermediate contour. The

results of this are shown in Figure 3.5 and Figure 3.6. These can be compared to

Figures 3.7 and 3.8. Note that the intermediate contour is more complete at the

cost of some outliers. The reason for this is that using Bresenham’s circle algorithm

is not optimal in that it is greedy, terminating as soon as it finds one point. It is
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Figure 3.7: Final intermediate
contour; right contour is lower

Figure 3.8: Final intermediate
contour; right contour is higher

possible, however, that there are additional points that are at the same distance.

The direction of the circular search also has an impact on which point is chosen first,

which sometimes causes the search from lower to higher contour to have a different

midpoint than the search from higher to lower contour. Lastly, a circle on a grid

is necessarily not perfectly round, and some pixels must be skipped. One of these

skipped pixels may, in fact, be the closest neighbor. Because of these problems, the

intermediate contour is viewed as a good approximation. In the thin plate processing

stage, therefore, these computed points are allowed to change to give us a smooth

surface.

3.3 Sample Output

Using the synthetic data from Figure 2.5, two iterations of the intermediate

contour method produce contours as shown in Figure 3.9. The method can be run

iteratively until the entire surface is computed. However, there may be small gaps

in the computed contours because the method assumes that successive, increasing

elevation contours have a convex shape, generally circling a local maxima. Thus,

in order to reliably fill in any uncomputed areas and to promote a smooth surface,

the thin plate approximation is applied to create the final surface. (A different

method of filling in the gaps is discussed in Chapter 5.) Figure 3.10 shows the

surface computed from the contours shown in Figure 2.5. Because the computed

intermediate contours introduce new elevation values into the initial data set, the

resulting surface is much more accurate than a thin plate approximation alone.

It is sometimes difficult to ascertain the differences between various reconstruc-
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Figure 3.9: Synthetic data with two iterations of intermediate contours

Figure 3.10: Surface approximation using intermediate contours

tion methods using only three-dimensional renderings. Figure 3.11 shows graphically

the differences between identical diagonal profiles computed using different methods.

A profile computed using the thin plate with springs is compared to the intermediate

contour method. The intermediate contour method produces a profile that fits the

observed data much better; that is, it does not “sag” between successive contours

compared to the thin plate surface.
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Figure 3.11: Plot of diagonal profile showing results of different recon-
struction methods

3.4 Performance of IC Method

The performance of thin plate methods was discussed in Chapter 2. It remains,

therefore, to establish the performance of computing intermediate contours. At

each grid position p that contains an observed contour value, a circular search is

performed to find the closest neighbor. When the neighbor is found, the search

terminates. The search also terminates in octants in which a contour with the same

elevation as p. A final condition is that the search terminates at some maximum

search distance which is defined to be the maximum distance between contours,

computed when the data is read in.

We can easily find the upper bound performance of this method, but in practice

it is much lower but very difficult to quantify. All of the nodes must be visited, which

contributes at most n2. At each node, we search for a neighboring contour using

Bresenham’s circle algorithm. The maximum estimate for the search is πr2, where

r is at most n
2
. This gives us a worst-case time of O(n4) for one iteration. To

completely fill the grid requires log n iterations, resulting in a total of O(n4 log n).

This upper bound can be reached only with completely unrealistic input data.

Based on our test data, we can compute a more realistic upper-bound. While

it is true that there are n2 total points in the grid, most of them do not represent a
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contour location. Using all of our data files, only a minimum of 3% to a maximum

of 8% of the nodes contain elevation data which will need further processing. In

our test files the maximum number of elevation values is m = 7n, far below n2. For

each of the elevation nodes, a search for a neighbor is done. As before, a maximum

estimate for the upper bound is πr2, where r is at most n
2

= d, making the final

estimate πd2. This upper bound can only occur in the exact center of the grid and

only when there are contours on the very edges of the grid. Alternatively, the worst

case occurs when one contour is at one boundary and the another contour is at the

opposite boundary. In this case, n pixels must be searched, but only in half the grid,

giving us the same estimate. More realistically, we need to search only until another

contour is touched, which depends on the distance between contours. In our test

data, this distance ranges from a low of 70 pixels (in a file where n = 257) to a high

of 598 pixels (in a file where n = 900). The distance depends on the topology of

the area, of course, and can change drastically within the same map. Furthermore,

portions of the circular search terminate as soon as one of the conditions outlined

above is reached. This is very difficult to quantify, however. The resulting worst-case

performance is mπd2 = O(md2) for one iteration. Filling in the entire grid requires

log d iterations for a total of O(md2 log d). It is important to note that after each

iteration, the distance between contours is halved, making each subsequent iteration

twice as fast as the previous. Furthermore, as the contours become more dense, the

value of d decreases to a minimum of 1, which will decrease the upper-bound to

Ω(n2). Similarly, as the density of the contours decreases, m must decrease while d

increases to a maximum of n. The bound in this case O(n2 log n).

The total performance is thus the time for the generation of intermediate

contours plus the time for the thin plate processing:

O(md2 log d + n2 log n) ≈ O(n2 log n) (3.1)

3.5 Summary

In this chapter, we have described the Intermediate Contours method. It cre-

ates new, interpolated contours in between existing contour lines. This, in turn,
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provides more data to subsequent thin plate processing, alleviating the terracing

problem in most areas. The intermediate contours are computed without any sig-

nificant additional overhead as compared to the thin plate processing. However, it

should be noted that the thin plate processing can be rather time consuming. The

addition of intermediate contours may take substantial time as well, especially in

larger grids.



CHAPTER 4

The top of Everest, two vertical miles above, seemed so impossibly distant

that I tried to limit my thoughts to Camp Two, our destination for the day.

– Jon Krakauer[52]

Creating Surfaces with Gradient Lines

One of the major problems with isoline data is the fact that data is oversampled

along a contour line and undersampled across the line [86]. Furthermore, it is known

that the steepest slope is orthogonal to the tangent at a point on a contour line. If

the direction of steepest slope (aspect) can be found at every point, then a path, or

“gradient line,” can be found joining a local minima to a local maxima. Using the

elevations from the contours that the path crosses, a spline can be fitted along the

path. Repeating this method for all points will create an interpolated surface which

can then be smoothed as desired. The resulting surface does not show the terracing

effects due to oversampling because the gradient lines cross contours orthogonally.

Figure 4.1 shows the flow of control when computing DEMs using the Gradient

Lines method.

4.1 Computing Gradients

In order to create a gradient line, the gradient must first be found at each point.

From this, the aspect can be computed easily [76]. Given a function z = f(x, y),

the gradient is defined by the vector [53]:

∇f(x, y) = fx(x, y)i + fy(x, y)j (4.1)

Although this equation can be solved directly, a more accurate result will be

40
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Figure 4.1: Flowchart showing path through gradient lines (dark line)

achieved by differentiating twice. A suitable function is the Laplacian:

f(x, y) = fxx + fyy (4.2)

Because the Laplacian is a function of x and y, we can substitute it into

Equation 4.1 which yields:

∇f(x, y) = fx(fxx + fyy)i + fy(fxx + fyy)j (4.3)
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One way to solve such an equation is to employ central differences. The three-

point central difference equations [39] are:

fxx ≈
f(xi−1, yj) − 2f(xi, yj) + f(xi+1, yj)

h2
(4.4)

and

fyy ≈
f(xi, yj−1) − 2f(xi, yj) + f(xi, yj+1)

h2
(4.5)

where h = grid spacing.

Because only an approximation to the gradient at any point is desired, the

small error term associated with each central difference equation can be safely ig-

nored. Assuming a grid of n2 points, (x1, y1) to (xn, yn) and ignoring boundaries s.t.

i, j ∈ {3..(n − 2)}, substituting the central difference equation for each fxx and fyy

in the gradient equation yields:2

∇f(x, y) = fx

(

f(xi+1, yj) + f(xi−1, yj) + f(xi, yj−1) + f(xi, yj+1) − 4f(xi, yj)

h2

)

i

+

[

fy

(

f(xi+1, yj) + f(xi−1, yj) + f(xi, yj−1) + f(xi, yj+1)

h2

)

−fy

(

4f(xi, yj)

h2

)

]

j (4.6)

Now letting h = 1 and expanding,

=
[

fx(xi+1, yj) + fx(xi−1, yj) + fx(xi, yj−1) + fx(xi, yj+1) − 4fx(xi, yi)
]

i

+
[

fy(xi+1, yj) + fy(xi−1, yj) + fy(xi, yj−1) + fy(xi, yj+1)

−4fy(xi, yi)
]

j (4.7)

The two-point central difference equations [39] are:

2The equations for the borders, where i, j ∈ {1, 2, (n− 1), n}, are similar.
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fx ≈
f(xi+1, yj) − f(xi−1, yj)

2h
(4.8)

and

fy ≈
f(xi, yj+1) − f(xi, yj−1)

2h
(4.9)

Substituting the two-point central difference equations into 4.7 and setting h

to 1 yields:

∇f(x, y) =
1

2

[

f(xi+2, yj) − f(xi−2, yj) + f(xi+1, yj−1) − f(xi−1, yj−1)

+f(xi+1, yj+1) − f(xi−1, yj+1) − 4f(xi+1, yj) + 4f(xi−1, yj)
]

i

+
1

2

[

f(xi+1, yj+1) − f(xi+1, yj−1) + f(xi−1, yj+1) − f(xi−1, yj−1)

−f(xi, yj−2) + f(xi, yj+2) − 4f(xi, yj+1) + 4f(xi, yj−1)
]

j (4.10)

Each f(xi, yj) represents the elevation at location (xi, yj). Thus, the gradient

can be computed at any point provided there are valid elevation values found for

each neighboring point. Elevation values are estimated by computing an initial thin

plate surface; employing intermediate contours can yield a better initial surface and

thus produce more accurate gradient values.

4.2 Finding Gradient Lines

Once the gradient is found, a gradient line can be formed. Starting from any

grid position P1, the next point in the gradient line, P2, is found by moving in the

appropriate direction as indicated by the aspect of P1. Because of the limitations of

a regular grid, the actual direction is rounded to one of the eight neighbors of the

point. P1 is then stored and P2 becomes the starting point to find the next point

along the line. When the gradient is found to be zero, a local maxima has been

reached and the search terminates. Similarly, the search progresses in the opposite

direction until a local minima is reached.
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Because each Pi in the line will not lie directly on an observed elevation value,

the next step is to find an interpolation of all the unknowns. Each gradient line will

pass through some known elevations along contour lines. These elevations can form

a basis from which to interpolate by using a one-dimensional spline. The spline

used because of its accuracy in passing through each observed data point is the

Catmull-Rom spline, which has desirable C2 continuity [29]. These splines inter-

polate between two points B and C. Continuity is achieved by using the previous

point in the path A and the next point in the path D to guide the interpolation

through B and C. Such a spline is computed for each gradient line, resulting in a

new “shell” of the surface which is quite accurate, especially along ridge lines. The

surface may not be very smooth, however, because there is no direct relationship

between individual gradient lines.

Figure 4.2 shows two sets of intermediate contours computed using the syn-

thetic data set. In addition, a portion of the gradient lines can be seen following

the steepest slope and crossing contours. This image was generated by computing

gradient lines for every tenth grid value instead of every point. It can be seen that

the gradient lines join local minima and maxima, ending in local flat areas. Some

discontinuities are evident as well; these are the result of inconclusive gradient es-

timations at certain points. Such gradient values can result when the local initial

thin plate surface is flat, such as in an area where a terrace is observed. In order to

fill in such gaps and to afford a continuous, smooth surface, the minimum curvature

method is employed to produce the final result, as shown in Figure 4.3.

As was done in Chapter 3, a diagonal profile of the synthetic data was gener-

ated to compare the results of the Gradient Lines and the thin plate approximation

methods. The resulting plot is shown in Figure 4.4.

4.3 Performance

The performance analysis of the Gradient Lines method is, unfortunately,

not straightforward. The first stage is to create an initial surface from which to

compute gradients. This is done with the thin plate approximation which takes

at least O(n2 log n). The computation of the gradients is straightforward; it is a
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Figure 4.2: Gradient lines and intermediate contours

Figure 4.3: Approximated surface using gradient method

constant time operation for each of the grid points for a total of O(n2). The difficult

portion is determining the performance of the calculation of the gradient lines. For

each grid point not yet visited, a gradient line is computed. The number of nodes

visited along the path is difficult to determine. At most, it is O(n2), but this can

not happen realistically. However, we may assume that a line will reach either from

one side to the other of a grid, following either an uphill or downhill trend. Since

the path will not be straight, we can make an estimate of O (cn), where c is a small

constant. This makes the total gradient lines computation O(n3). The final step

in the method is to smooth the resulting surface, again employing the thin plate



46

approximation. The complete performance figure is then:

O(n2 log n + n3 + n2 log n) = O(n3) (4.11)

for a grid of size n × n.

4.4 Summary

In this chapter, we have introduced a new method to alleviate the local ter-

racing problem while creating globally good terrain surfaces. The method involves

computing gradient lines which are interpolated paths that follow the steepest slope,

an idea similar to what some researchers refer to as “lofting.” As such, the method is

less arbitrary than, for example, the IC method. The drawbacks to the method are

that the gradient computations depend on an initial surface estimate which may not

be sufficiently accurate to provide good gradients. A second drawback is that the

method increases the computation costs relative to thin plate methods. However,

an increase in surface accuracy will usually result.
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CHAPTER 5

You can look down in [crevasses] for distances stretching from 100 feet

to Hades or China. ...Most of them appear to be bottomless.

These are not good things to look at.

– Tom Lloyd, quoted in [71]

Fast Surface Interpolation/Approximation

In this chapter, we discuss two methods which will accurately compute a DEM

directly from the initial contours without the need for computationally expensive

thin plate methods.

5.1 Maximum Intermediate Contours

In Chapter 3, we explained how intermediate contours can alleviate some of

the problems encountered when interpolating or approximating using thin plate

methods. We will now show how intermediate contours can be used to create an

almost complete surface through iteration. This method is called the Maximum

Intermediate Contour (MIC) method. In addition to the intermediate contours,

several additional steps are needed to produce the final DEM. The steps are shown

in Figure 5.1.

5.1.1 Computing Boundaries

By continually computing intermediate contours, we wish to compute the en-

tire surface. However, if the surface trend is upward toward a boundary, that is,

successive contours have higher elevations as they get closer to the edge of the grid,

then the last contour in the grid will not have any closest neighbors of greater ele-

vation. The method would not compute any new elevation values from the highest

47
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Figure 5.1: Flowchart showing Maximum Intermediate Contours method

contour closest to the edge to the boundary itself. This would leave significant gaps

in the surface.

In order to create intermediate contours that extend to the edges of the grid, we

compute a boundary rectangle around the perimeter of the grid having a thickness

of two pixels.3 Two cases can occur: If the grid in question is a contour map of an

area that is relatively hilly, then there will be some contours that cross the edges of

3The reason why two pixels are computed will become clear in Section 5.2.
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the grid. The solution is to linearly interpolate from one contour to the next along

the boundary. The four edges are mapped to a one-dimensional array which is then

easily interpolated. That is, for a grid z with n2 points, an array Bound is created

of size 4(n − 1). Bound[1] to Bound[n] stores the first row of the grid, z[1][1] to

z[1][n]; Bound[n + 1] to Bound[2n] stores the rightmost column of the grid, z[1][n]

to z[n][n], and so on for the remainder of the grid in a clockwise fashion. Observed

elevation values are noted as such in the array. Values are then interpolated from

one observed elevation to the next. Care must be taken to interpolate between the

last and first observed elevations in the array. Lastly, the one-dimensional array is

mapped back to the two-dimensional grid. The steps are repeated for the second,

or inner, boundary defined to be the second pixel from any of the four edges.

In the second case, which is very rare, no contour lines cross the grid edges. If

this occurs, the contour with the lowest elevation is found. This elevation is assigned

to the two perimeter edges of the grid. While this method is rather arbitrary, the

situation arises only if the data is synthetic or if the topology is extremely flat. In

both cases, the boundary values should suffice.

5.1.2 Computing Interior Elevations

The generation of intermediate contours was explained in Chapter 3. They

are useful for providing additional data for thin plate methods, alleviating the ter-

racing problem. By continually computing intermediate contours, almost the entire

surface can be approximated. Figure 5.2 shows the result of applying the maximum

intermediate contours to the synthetic contours of Figure 2.5.

Although the surface seems generally good, two problems are immediately

apparent. The first is that there are no computed elevations between the boundaries

and the lowest contour of both hills. This is due to the fact that both hills have the

same elevation for their lowest contours. Since the intermediate contour algorithm

looks for contours at the next higher elevation, no new elevations are computed. The

second problem that manifests itself is in the small gaps that appear throughout the

surface. This problem can actually be broken into two separate situations: peaks

and non-peaks. For the same reason that there are no elevations computed between
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Figure 5.2: Result of applying maximum contours to synthetic data

the boundaries and the lowest contours, there are no values computed for the areas

defining the peaks of both hills. This will always occur and is dealt with by one of

the methods described in the following sections. The intermediate contour method

is also limited by its Bresenham search. The circular search will not always find the

closest point because of reasons outlined in Chapter 3. There usually will be small

gaps that remain after intermediate contour processing. This is handled by filling

in with inverse-distance weighting, described later.

5.1.3 Peak Interpolation

Peak areas are usually relatively small portions of the grid that are bounded

by a locally maximum contour. Intermediate contours can not be computed because

there are no higher contours to which to compare. The following method also applies

to areas between the boundaries and lowest contours of the same elevation as occurs

in the synthetic test data.

The elevations in the areas in question are found by computing one-dimensional

splines in the horizontal direction. Shmutter and Doytsher [72] discuss another

method for computing peaks. We originally believed that the splines were necessary
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in at least two directions (horizontally and vertically), but this proved not to be

the case. We chose Hermite splines [29] for the interpolation. These splines are

well suited for the task because they interpolate between two points P1 and P2

by using the direction vectors found at those locations. By taking the direction

vectors of both ends into account, a smooth spline is formed that blends in with the

surrounding surface.

For the Hermite splines to be as accurate as possible, it is necessary to find

good direction vectors for P1 and P2. Direction vectors can be found by looking at

the point and its neighbors, but the results may not be very accurate for two reasons:

contour digitization and/or errors from intermediate contour generation. In the first

case, in areas where contours curve, digitized contours are typically more than one

pixel wide. If a direction vector is computed from neighbors of a contour point, it is

possible that the direction will be computed as 0 because all of the neighbors may

reside on the same contour. This result would not be correct. In the latter case,

the surrounding area was computed previously by the intermediate contour method.

These values are estimates of the elevations in the area and are therefore subject

to some error. The solution is to find a previous contour point P0 and a following

contour point P3. Since the direction of the vector must coincide with the spline,

no computation is necessary. A good estimate of the slope at point P1 can be found

from the distance and elevation of P0; likewise, the slope at P2 can be found using

the information from P2 and P3. If the slope is found to be 0 on on both ends, the

elevation at P1 is simply copied for all the points between P1 and P2.

The entire peak interpolation algorithm for an n×n grid is therefore as follows

(all observed contour elevations are marked as such previously):
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for row r = 1 to n

P1 = 3 // First two columns are boundary values

while P1 < n − 1

P1 = search for an uncomputed area starting from P1

P0 = previous marked contour 6= P1’s contour

P2 = end of uncomputed area

P3 = next marked contour (not the same contour as P2)

slopeleft = (P elevation
1 − P elevation

0 )/(P1x − P0x)

sloperight = (P elevation
2 − P elevation

3 )/(P3x − P2x)

if (slopeleft = 0 and sloperight = 0)

set elevations between P1 and P2 = P elevation
1

else

compute Hermite spline between P1 and P2 using

slopeleft and sloperight

endif

P1 = P2 + 1

endwhile

endfor

5.1.4 Filling in Gaps

Referring back to Figure 5.2, there will still be small gaps in the surface after

executing the peak interpolation procedure. These gaps are typically small and

thus powerful interpolation techniques are not required. Furthermore, the surfaces

surrounding the gaps are good approximations found by the intermediate contour

method. We use inverse distance weighting to fill in the small remaining gaps:

z(x, y) =
wleft ∗ z(xleft, y)

wsum

+
wup ∗ z(x, yup)

wsum

+
wright ∗ z(xright, y)

wsum

+
wdown ∗ z(x, ydown)

wsum

(5.1)
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where z(x, y) = elevation at location (x, y)

wleft = 1
(xleft−x)2

wup = 1
(yup−y)2

, etc.

wsum = wleft + wup + wright + wdown

and the subscripts left, up, right, and down represent the location of the closest

known elevation in each of those directions.

This method does not suffer from its usual deficiencies precisely because of the

good approximations of the surface surrounding the unknown areas. These areas

are filled in accurately and quickly.

5.1.5 Smoothing

The last step in the creation of the DEM is smoothing. In the computation

of intermediate contours, there is no provision for ensuring that a new elevation

blends in with its neighbors. Similarly, there is no continuity assured in the vertical

direction of the peak interpolation procedure. Consequently, it is necessary to apply

a smoothing filter over the entire surface to minimize the total curvature and to

promote better surface continuity.

In the previous methods described in Chapters 3 and 4, the thin plate compu-

tation created the smooth and continuous surface. However, the thin plate method

was used to interpolate values, at high computational cost. With the maximum in-

termediate contour method, the entire surface is already computed, and a function

is needed to smooth the result. A good smoothing function is the Gaussian filter.

In one dimension, it is defined by:

g(x) = e−
x2

2σ2 (5.2)

where σ represents the width of the Gaussian; a larger σ yields more blurring [48].

We can create a five-point approximation by using the coefficients of the binomial

expansion to create a one-dimensional, five-element filter:
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z(x) =
1

16

(

z(x − 2) + 4z(x − 1) + 6z(x) + 4z(x + 1) + z(x + 2)
)

(5.3)

where z(x) represents the elevation at location x. Equations for elevations near the

edges of the grid are similar. We arrive at a convolution of the entire surface by first

convolving the grid in the horizontal direction by Equation 5.3, and then convolving

the surface with the same filter in the vertical direction. In the case of convolving in

the vertical direction, z(x) is simply changed to z(y). Convolving in both directions

is considered one pass of the filter; the user can choose the number of passes desired.

Note that each pass of the filter will smooth the surface by effectively lowering the

global elevation. Care must be taken to produce a surface that is smooth while

maintaining an acceptable level of accuracy.

We have two versions of the Gaussian smoothing in the maximum intermediate

contours method. Notice that in Equation 5.3 the value of z(x) is changed. If

one desires an interpolation of the surface from the contour data, then the original

contour elevations should not be changed. In what we call the Gaussian interpolating

filter, we first check if the elevation to be smoothed, that is, z(x), is marked as an

observed contour value. If so, the point is skipped. If it is not marked, the point is

smoothed by the filter. If the user wishes a surface approximation, then the value of

z(x) is always replaced by the Gaussian filter result. The approximation is usually

preferable because it gives a much smoother result.

The final result of all of the steps of the maximum intermediate contour method

as applied to the synthetic file can be seen in Figure 5.3.

5.2 Fast Spline Interpolation

In Chapter 4, we discussed the Gradient Lines method which uses Catmull-

Rom splines to create an initial estimation of the surface. These splines pass directly

through the control points, making them true interpolants. Furthermore, the splines

are desirable because they exhibit C2 continuity, making them very smooth. Once

all of the splines are computed, the surface is completed by applying a thin plate
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Figure 5.3: Final surface using MIC method

method.

The problem that manifests itself in the construction of gradient lines is the

calculation of the gradient which is based on a thin plate surface approximation. If

the initial approximation is poor, then the computed gradients will not be accurate,

yielding gradient lines that do not necessarily follow the steepest slope. Since that

method is only an approximation, we can use the same Catmull-Rom splines in

horizontal and vertical directions to get an alternative approximation. The splines

alone will form the surface, obviating the need for any computationally expensive

thin plate processing. This method, which we call simply the Fast Spline method,

is much faster than the Gradient Lines method, although it may be slightly less

accurate. The steps of the entire procedure are shown in Figure 5.4.

The heart of the procedure is the Catmull-Rom spline. These splines assume

four control points: two endpoints and two interior points. The interpolation occurs

between the two interior points. The splines will be applied in the horizontal and

vertical directions across the entire grid. There is a very small likelihood that there

will be a contour coinciding with a grid boundary, so there will not be any data

for the spline to interpolate until the first two contours are crossed. It is therefore

necessary to have at least two values computed at the boundary for the spline

to interpolate to the edge of the grid. The boundary computation described in

Section 5.1.1 handles this problem.

The algorithm proceeds as follows. Catmull-Rom splines are computed for all
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Figure 5.4: Flowchart showing Fast Spline method

vertical and horizontal lines in the grid. Boundary values and contour elevations

are used as control points in the splines. The splines are computed for all interior

control points except in areas where the two ends have the same elevation. In such

a case, the spline may perform poorly, especially if the contours are far apart. The

result would be a surface that may be too flat. Once a vertical or horizontal spline

is computed, all of the values are marked. All marked values are used as control

points in subsequent spline computations.
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Figure 5.5: Result of four itera-
tions of splines on synthetic data

Figure 5.6: Result of applying
splines to synthetic data

In order to avoid horizontal or vertical bias, the splines are computed in a

lattice fashion. The next spline to be computed is always the middle row or column

of the area not yet computed. Thus, the first spline to be computed is the row in the

middle of the grid. In a grid of size n×n, this would be row n/2. This splits the grid

into two horizontal areas. The next spline is the column in the middle of the grid,

or column n/2. Ignoring the row splines, this splits the grid into two vertical areas.

This completes one iteration. In the next iteration, the splines to be computed are

in the middle of each of the areas created in the first iteration. Thus, the next

splines will be in row n/4 and n − n/4 in the horizontal direction. The vertical

direction is computed analogously. This continues until the entire grid is computed.

Figure 5.5 shows the synthetic data after four iterations of the algorithm. Note that

there are no values computed between the boundaries and the lowest contours and

other areas where the two ends of the spline are at the same elevation. However,

after more iterations, splines in the orthogonal direction will fill in all gaps between

contours, as shown in Figure 5.6. Only peaks remain to be filled with the possible

addition of the area between the boundaries and the lowest contours in the case of

synthetic data.

The splines are not used to compute peaks because they tend to produce
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Figure 5.7: Final spline surface from synthetic data

surfaces that are too flat. The same procedure used in the MIC method to compute

peaks, described in Section 5.1.3 is employed here as well. The final surface is

smoothed using the same Gaussian filters as described in Section 5.3.

5.3 Performance

All of the thin plate methods have the major drawback of high computation

time. As discussed in Chapter 2, convergence occurs at best in O(n2 log n) time for

a grid of size n × n. This result was achieved by computing a convergence factor

based on experimental results on very small samples [10]. The convergence for a large

grid typical of terrain data may be quite different, putting the performance claim

into question. Nevertheless, the methods described in this section show improved

computation performance. In what follows, the grid size is assumed to be n × n.

5.4 Performance of MIC Method

The first step in the MIC method is the boundary interpolation. This is only

a matter of linearly traversing each edge of the grid. This is done twice to get a

thickness of two necessary for the spline interpolation. The length of each edge is

n, making the total for the outermost edge 4(n − 1). The inner boundary, that is 1

pixel from the edge, is 4(n − 2). The total is therefore O(n).

The second step is the computation of the intermediate contours. The perfor-
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mance analysis was discussed in Section 3.4, and is O(md2 log d), where m represents

the number of contour points and d represents the maximum distance between two

successive contours. Note that if m is the entire grid, i.e., n2, then d becomes 1.

Conversely, if d is large, i.e., n, then m must be small.

The third step is the interpolation of peaks using the Hermite spline technique.

The splines are computed in only one dimension. This is done quite easily by

examining each of the n rows of the grid. While traversing the n columns in a

row, we determine if a peak exists by finding the two endpoints of a non-computed

area. A peak is found if the endpoints lie on the same contour. The slopes are

computed at each end in constant time, and the values interpolated between the

endpoints using the Hermite spline. At most, n − 4 points must be interpolated,

the four points being the already interpolated values on the boundaries at each end.

The total time to compute one row is therefore n for searching plus (n − 4) for the

spline computation. For the entire grid, the total computation time is therefore

n(n + (n − 4)) = O(n2).

The next stage in the method is to fill in any remaining gaps using inverse

distance weighting. Once again, the entire grid must be searched for any non-

computed pixels, which is n2. If such a pixel is found, the inverse weighting operation

looks at most n
2

pixels in four directions for a total of 2n. At worst, the total time is

O(n3); however, the remaining gaps are usually only a few pixels wide on each side,

making this closer to a constant time operation in practice. Furthermore, most of

the grid points will not need any processing in this stage.

The last stage of the method is the Gaussian smoothing. At each point in

the grid, the calculation involves that point and four neighboring pixels which is

constant time. This is done in the horizontal and vertical directions for a total

of 2n2. The user can opt for the number iterations g of this method, making the

performance O(gn2). In practice, g is never more than 10, reducing the performance

figure to O(n2).

The worst-case performance evaluation of the MIC method is therefore:

O(n + md2 log d + n2 + n3 + n2) ≈ O(n3) (5.4)
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In practice, it is the intermediate contours computation which takes the most

time. If we assume that it takes O(n3) time, it is less computationally efficient than

the multigrid thin plate methods, which may be O(n2 log n). The MIC method is

much faster than the iterative thin plate methods. In any case, the MIC method

produces measurably better surfaces than the thin plate methods alone; see results

in Chapter 7.

5.5 Performance of Fast Spline Method

The performance evaluation of the Fast Spline method is much simpler than

that of the MIC method. The first step in the method is to compute the boundaries.

As shown in the previous section, this is O(n).

The next step of this method involves computing Catmull-Rom splines for

every row of the input file. The calculation of a spline is linear in the number of

values to interpolate. At most, we must interpolate n − 4 pixels per row, with the

four boundary values already computed. The spline is computed for each of the

n − 4 rows, for a total of O(n2).

The smoothing operation is the last step in the Fast Splines method. The

Gaussian function is used in the same way as in the MIC method. The performance

is the same O(n2).

The complete performance estimate of the Fast Splines method is therefore:

O(n + n2 + n2) = O(n2) (5.5)

This is indeed the fastest of all the methods discussed in this thesis. The surfaces

produced by this result may exhibit slightly lower accuracy in exchange for this fast

processing.



CHAPTER 6

024 — Elevation, in whole meters changed to Elevation, whole meters

– USGS – National Mapping Division

Map Data and Accuracy Measures

The accuracy of a computed terrain surface is, of course, an important considera-

tion when choosing a reconstruction method appropriate for one’s needs. It is also

impossible to judge the quality of a three-dimensional terrain model without knowl-

edge of the data that was used in its production. In this chapter, we first discuss the

type and accuracy of the data used in the production of DEMs. We then explain

several accuracy measurements and discuss their relative merits and drawbacks.

6.1 Input Data

We use contour data that has been digitized to a regular grid for all of our

input data. A few test files are synthetic, meaning that they were created by hand

using a drawing program such as xpaint. In such cases, contours were drawn with

a color representing the elevation. The colors were chosen to represent valid contour

intervals. Most of the data comes from USGS sources in the form of Digital Line

Graphs (DLGs). A DLG is a digital map data set in vector form. Among other

items, such as road and hydrography information, a DLG stores contours as a set

of nodes and lines which connect the nodes [83]. The nodes are stored as an (x, y)

pair denoting a physical location within the boundary coordinates of the map given

at the beginning of the file. The placement for the nodes is usually expressed in

meters, but can be feet as well, especially in older maps. The lines are guaranteed

to not intersect and always begin and end on distinct nodes. A contour is stored as

a set of nodes together with the contour’s elevation. The elevation is usually given
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in meters, but many maps, especially those that are older, show elevations in feet.

The largest USGS database is one which contains maps of 1:24000 scale. The

DLGs stored in this database are derived from published USGS 7.5 minute maps.

An important consideration is the fact that the age of these maps can be as old

as 50 or more years and therefore may not be as accurate as is possible with more

modern mapping techniques. These maps are digitized using automated drafting

machines which have a resolution of 0.001 inch and absolute accuracy of between

0.003 and 0.005 inches. An interesting fact is that “the DLG data do not currently

carry quantified accuracy statements [83].” This makes the process of determining

the accuracy of a surface computed from such data problematic. However, DLGs

are checked for correctness for the following items:

1. File fidelity and completeness: the digitized data is visually compared to proof

plots which were generated by the drafting machines.

2. Attribute accuracy: each DLG stores not only lines representing contours

complete with their associated elevations, but also other information such as

roads, railroads, trails, hydrography, pipelines, and the like. Each attribute

has an associated code. These codes are checked against a table of valid nodes

by software.

3. Topological fidelity: in this perhaps most important category, the guide simply

states: “The topological structure of each DLG is fully validated by software.”

The principle area of validation is in the checking of line crossings and similar

errors arising from the digitizing process.

The validation methods listed above apply to current DLG Level 3 maps, the

highest USGS quality standard. Future DLGs will also include additional error

checking for edge matching and for quality control flags which note the presence of

alignment or attribute discontinuities.

The DLGs used in this thesis were gathered from USGS sources on the World

Wide Web. Most were retrieved from the public FTP (File Transfer Protocol) site

from Xerox:
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ftp://spectrum.xerox.com/pub/map/

This source contains matching DLGs and DEMs for the same geographic locations,

enabling comparisons useful for testing the performance of reconstruction methods.

The DLGs found at this site are stored in USGS’s “optional” format. The format

simply defines the order of presentation of the multifarious attribute data within the

file. Several processing steps are necessary in order to extract and convert the raw

data from the USGS format to a regular n×n grid used in the surface reconstruction

software:

1. The line segments which form each contour are extracted from the DLG and

stored as a set of endpoints and the contour’s associated elevation value.

2. Because a DLG encompasses a large geographic area, its size is prohibitive for

testing our surface reconstruction algorithms. Thus, a grid size is chosen such

that it maps to a smaller, more manageable area of the DLG. The coordinates

of the boundaries of this virtual grid are noted. A real grid of the same size is

created and initialized to zero.

3. For each of the line segments forming contours found in step 1:

(a) Digitized contour lines are created from the endpoints of the line segments

using Bresenham’s line algorithm [29]. Note that aliasing problems may

occur at this stage.

(b) The individual line segments form a contour which is usually quite large.

The contour may be wholly visible, partially visible, or completely invisi-

ble within the defined boundaries. Therefore, the lines are clipped to the

boundaries.

(c) The clipped line segments with the original coordinates are normalized

to fit within the actual grid boundaries.

(d) The normalized line segments are mapped to the regular grid.

4. The last step is to store the grid in a Portable Gray Map (PGM) file. This

format only needs three extra lines of header information which describe the file
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as a PGM file, the size of the grid, and the maximum color value. Comments

may also be inserted. This format is convenient because such files can be

viewed easily using the publicly available graphics visualization program xv

[6].

The result of the above steps is a PGM file which contains the elevations of

every contour within the defined boundaries. Other areas have elevation zero. For

the purposes of this thesis, we have made the grids square. However, this is not a

necessity for any of the DEM construction techniques. The final grid has a one-unit

resolution, where the units correspond to those used in the processed DLG.

6.2 Accuracy Measures

The accuracy evaluation of computed DEMs is an exercise fraught with danger.

We will present several quantitative measures which may be useful in determining

the accuracy of a DEM. However, these results may be misleading in some cases,

resulting in the conclusion that pure quantitative analysis of a surface may not

suffice in determining its accuracy. A qualitative analysis may show errors not

easily recognized by quantitative measures. It is therefore desirable to look at several

accuracy and smoothness measures to determine if a computed surface meets the

user’s needs.

6.2.1 Smoothness

One way to quantify the smoothness of a surface is to compute the total

squared curvature C2 of a grid of n × n points [9]:

C2 =
n
∑

i=1

n
∑

j=1

(Ci,j)
2 (6.1)

where Ci,j is the curvature at the point (xi, yj). The curvature is a function of zi,j

and can vary depending on the accuracy of the measurement of curvature one would
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like to achieve. One such function is:

Ci,j = zi,j−1 + zi−1,j + zi,j+1 + zi+1,j − 4zi,j (6.2)

Note that this measure of curvature is biased towards flatness; if Ci,j = 0, the

surface is flat. A more accurate function would include more neighbors, such as

Equation 2.4. The lower the squared curvature, the smoother the surface.

While the squared curvature (C2) is useful for comparing surfaces derived from

the same input data, it is a sum of the curvature at each pixel and, as such, is of

no use in comparing surfaces computed from different data because the measure

depends on the number and steepness of the input contours. It is also not useful

for assessing the quality of one DEM unless one knows a reliable total curvature

estimate of the area. In such cases, a more useful measure is the average absolute

curvature:

Cave =
1

n2

n
∑

i=1

n
∑

j=1

|Ci,j| (6.3)

The closer Cave is to 0, the smoother the surface. This measure is not affected by

the number of DEM points and is therefore useful in comparing surfaces computed

from different contour maps.

Consider Figures 6.1 and 6.2, surfaces computed from the synthetic data shown

in 2.5. Notice the relative smoothness of the two surfaces. The total squared

curvature for Figure 6.1, computed using thin plate interpolation, is 8888.46. The

total squared curvature of the surface in Figure 6.2, a thin plate approximation, is

1030.73, bearing out the intuition from visual inspection that Figure 6.2 is smoother,

especially in the steep portions just slightly up from the center of the image. The

average curvature also supports this observation, with Cave = 0.096 and Cave =

0.056, respectively. Note that the average curvature is quite low, indicating that

both surfaces are relatively smooth.

While both measures of curvature assign a numerical quantity to a particular

surface, the nature of these functions result in only an approximation of the global
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Figure 6.1: Surface computed
from synthetic contours using thin
plate method

Figure 6.2: Surface computed us-
ing thin plate with springs method

smoothness of a surface. Unwanted local inflections may not influence the global

smoothness to a perceptible degree. For example, a surface may be deemed smooth

by its total squared curvature, but there may be small areas where the surface cur-

vature is undesirable. In order to see such areas more clearly, the relative curvature

of each grid point can be computed and shown in a graphical display, using shades

of gray or different colors to differentiate the curvature values. The total number of

grid points corresponding to each computed curvature value can be plotted so as to

compare different surfaces directly. The relative curvatures of Figures 6.1 and 6.2

are shown in Figures 6.3 and 6.4 respectively. The darker the pixel, the higher the

curvature. It is important to note that the curvatures depicted in the figures are

relative to curvatures in that file ONLY! The two figures can NOT be compared to

one another. What the Figures do show is the location of the areas with the highest

curvatures. Notice that in Figure 6.3, the highest curvatures are concentrated near

the steep portion of the hill. In Figure 6.4, the curvature is more evenly spread over

the entire surface.

The total number of points with certain absolute curvature values can be

plotted as well. This is shown in Figure 6.5. From the graph, one can ascertain that

the thin plate interpolation has more points with higher curvature than the thin

plate approximation. The maximum curvature of the interpolation is 21.0 (off the

scale), while the maximum curvature of the approximation is only 1.9. Thus, the thin

plate interpolation has more areas with higher curvature than the approximation,

explaining why the total squared curvature and the average curvature are both
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Figure 6.3: Relative curvature of
the surface shown in Figure 6.1;
Darker pixels = higher curvature

Figure 6.4: Relative curvature of
the surface shown in Figure 6.2

larger. Recall that the average curvature of both files is relatively low. This is due

to the fact that in both cases, most points have a curvature of essentially zero (both

lines at the upper end of the scale in Figure 6.5 converge to a curvature of 0).

6.2.2 Accuracy

Accuracy can be defined as the difference between an observed data value and

its corresponding computed value [89]. The usual measurement of accuracy of a

DEM is the root mean square error (RMSE) of the surface [66]:

RMSE =

√

√

√

√

1

n2

n2

∑

i=1

(zi − wi)2 (6.4)

where zi = the interpolated DEM elevation of test point i

wi = the true (most probable) elevation of test point i

Obviously, one must have an accurate surface with which to compare. The

nature of computing surfaces from scattered data implies that there is no previous

surface to which comparisons can be made. The RMSE is still useful in that points

on the computed surface can be compared to the corresponding observed points on
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the contour map or in the set of scattered data. We can also compare the computed

surface to a USGS published DEM of the same area. However, DEMs have errors

as well (see Section 6.3), so this is only useful for comparing different methods on

the same data set. When computing a surface approximation, the lower the RMSE

the better the surface “fits” the data.

Another method for determining accuracy can be found in [42], where the

slopes surrounding a point are compared to ascertain whether the surface is smooth.

The paper further gives an algorithm which uses the error information in order to

correct any anomalies in the surface.

Using any of the above methods for determining smoothness or accuracy, one

can test a system by recovering contours from a DEM, then producing a new surface

from these contours. The resulting surface can be compared to the original DEM us-

ing any desired method. One problem with this approach is that USGS DEMs have
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only 30 meter resolution, which makes the creation of contours from this relatively

large-spaced data rather inaccurate.

6.2.3 Qualitative Measures

Purely quantitative measurements of a DEM do not always determine the

accuracy of the surface. Often, these measures only give an estimate of the overall

quality of the computed surface. However, gross imperfections may exist in a small

area of a DEM which otherwise exhibits good behavior. Wood and Fisher [89] have

proposed a visualization method which helps detect errors which may not be found

using conventional techniques. Although a common method is to display contours

with various colors, this is not deemed adequate. A more useful visualization is

to display the surface as a shaded relief map, changing contrasts or colors so as to

see different aspects of the data. This method allows one to see problems such as

terracing. All of our results are displayed using the scientific visualization package

DataExplorer from IBM. This package allows the user to view the surface in three

dimensions. The image can be rotated easily. Zooming functions are also provided,

allowing the user to view specific problem areas. Colors are assigned to elevations,

with blue being the lowest and red the highest. Although the user may change the

colors, it was found that the default colors, though not realistic, better differentiated

the elevations. Images created by DataExplorer are used throughout this thesis.

It is sometimes difficult to determine the fit of a surface relative to the initial

contours even with a good visualization package available. In such cases, it is often

desirable to plot a profile or cross section of the surface. The plot can be overlaid

on the original contour data, showing how well the surface corresponds to the initial

data. This kind of plot is also useful for comparing different reconstruction methods.

For example, Figure 6.6 shows how the IC method follows the slope of the contours

better than the thin plate approximation method (the vertical lines represent the

initial contour elevations). This may not be obvious in the images, especially when

only grayscale is available.

Computing the slope and aspect of a DEM and plotting the results can also

reveal problems in the surface. Laplacian filtering can be used, as well as profile
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and plan convexity, found by computing the second derivative in both the x and y

directions. The latter method may be best of all, since it showed some errors that

were not clearly represented by any other method in Wood and Fisher’s experiments.

Finally, it is also possible to visualize RMSE or curvature (see Section 6.2.1, which

shows the locations of the areas with the greatest and least accuracy.

6.2.4 Comparisons to USGS Standards

A good decision on the smoothness/accuracy problem can be made based on

the standards set forth by the US Geological Survey (USGS) for their own DEMs.

There exist 3 quality levels for the standard 1:24000 scale, 7.5- by 7.5-minute, DEMs

[13]:

• Level 1 - no point should contain an error over 50 meters, a 7 × 7 array of

points should not be in error by more than 21 meters, and the maximum
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RMSE allowed is 15 meters. Furthermore, errors classified as systematic (er-

rors introduced by the creation of the DEM which results in a bias or artifact

in the computed surface) are tolerated. Many such systematic errors can oc-

cur in the very first stages of DEM production; namely, in the sampling phase

[67]. The digitization process may introduce errors (see [5] for more specific

information) as well as the problem of superimposing the sampled data onto a

regular grid. The latter problem has been addressed by some researchers; see

eg. [9] and [77]. Systematic errors that occur in any phase of DEM generation

are propagated to the next step.

• Level 2 - no point contains an error greater than two contour intervals and the

maximum RMSE allowed is one-half contour interval, not to exceed 7 meters.

These DEMs have been smoothed and edited so as to remove systematic errors.

This can be done in a variety of ways; for example, by manual editing or by

using automatic methods such as described in [42] or [60].

• Level 3 - no point contains an error greater than one contour interval and

the maximum RMSE allowed is one-third contour interval, not to exceed 7

meters. These maps have been further processed to insure positional and

hypsographic accuracy with respect to planimetric data such as transportation

and hypsography.

It is interesting to note that the RMSE is computed using only 20 control points

within a DEM. It is therefore adequate to compute the RMSE using the observed

data points when comparing a computed surface to the USGS standards because

the contours themselves will account for more than 20 points. Visual inspection,

often leading to manual editing, is a large component of the USGS process. Most

DEMs conform to Level 1 specifications, with newer DEMs conforming to level 2.

Even so, DEMs produced from contour data still showed signs of terracing as late as

1991 [2], indicating that surfaces with obvious errors still conform to the standards.

If one assumes that all DEMs are of Level 2 quality, then the maximum RMSE

for a 20 unit contour interval can be as high as 10. If the unit is greater than a

meter, than the RMSE must be lower than 7. In either case, the RMSE found for our
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computed surfaces are well within the USGS criteria. For example, the RMSE for

the thin plate approximation on the synthetic data (Figure 6.2), where the contour

interval is 20 units and the number of control points is 1975, is no more than 0.687

units (see Chapter 7). Such a low RMSE suggests that it is reasonable to allow the

values at the observed points to deviate slightly to achieve a smoother surface which

still conforms to USGS standards.

6.3 Accuracy of USGS DEMs

The RMSE is a major error measure in the quality assessment of a surface.

By its nature, the equation needs a basis surface to which to compare. It seems

natural to use USGS DEMs for this comparison. In order to understand the RMSE

computed from such a comparison, it is essential to understand how the DEM was

constructed and how accurate it is.

Burrough [11] claims that DEMs are usually made by sampling stereoscopic

aerial photographs using photogrammetric instruments. This has not been the case

with the USGS in the past, although the original maps from which they do the

sampling may be made this way. Newer DEMs may incorporate this new technology.

The production of USGS DEMs is explained by Rinehart and Coleman [66].

DEMs are created from published DLGs using a system called DLG2DEM. Hyp-

sography information (contours), hydrography information (water bodies), profiles,

and spot heights are extracted from a DLG. All of these attributes are used in the

creation of the DEM. The gridding process is done by Zycor’s CTOG software in

the following four steps:

1. Four scan lines representing the 8 neighbors of a grid point are generated. All

intersections between the scan lines and features are determined.

2. An initial elevation for a grid point is computed by linearly interpolating along

the scan lines. Weights are also determined for each direction incorporating

slope information.

3. As was described in Chapter 2, a simplistic linear interpolation will cause

terraces. If a sequence of identical elevations is detected, then a new elevation
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is determined for the grid location by following the slope information found in

the previous step. Weights are recomputed for the new point.

4. The final elevation is determined using a weighted average incorporating the

weights found in steps 2 and 3.

The DEMs computed using the above method correspond to Level 1 or Level

2 accuracy. Acevedo [2] shows that typically these DEMs still exhibit terracing and,

as of 1991, were still being produced using the same Zycor software. Obviously, care

must be taken when comparing one’s computed DEM to a USGS DEM.

Another issue to consider is the fact that the DEM is constructed from a

DLG. The DLG is also a digitized format in that it is built from paper maps. Even

assuming that drawn maps are accurate (which they are not), digitization errors

exist [11]. For example, even the lines themselves are problematic. A 1-millimeter

drawn line on a 1:100000 scale map covers an area 100 meter wide; a 1-mm line

on a 1:24000 map, the scale used in this work, covers an area 24 m wide, which is

significant. The general rule is to digitize the middle of the line, but this is difficult

in practice. Curves present another problem, as the number of vertices chosen on a

particular line impacts its precision. There are even problems regarding distortion

arising from the stretch of the paper. Other errors due to digitizing include one

contour which actually represents two, very close contours, or one contour which

has a split where the two close contours diverge.

Other sources of errors include the age of the maps used in the digitizing

process, and the density of observations (i.e., need more observations if area is very

irregular). The original maps may have problems in the original measurements,

such as the positional accuracy from poor field work or paper shrinkage, simple data

entry or operator errors, measurement errors and biases in the particular surveyor

him/herself.

Obviously, errors are ubiquitous in the creation of DEMs. Errors can occur

at the initial measurement stage in the field, and can be a factor in the creation

of paper maps. The errors on the paper maps are then propagated in the process

of creating DLGs. In addition, more errors are introduced in the form of paper

shrinkage and digitization errors. Finally, the compounded errors are propagated
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to the final DEMs, which also suffer from inaccuracies in the interpolation process.

Thus, it is almost impossible to quantify the overall accuracy of a DEM, making

comparisons to them somewhat suspect.



CHAPTER 7

I have had my results for a long time;

but I do not yet know how I am to arrive at them.

– Karl Friedrich Gauss

Experimental Results

Many experiments were run to test the effectiveness of all of the new methods. The

sample data was also used to create surfaces using traditional thin plate methods for

comparison purposes. Some data was synthetic, created with the program xpaint,

while most was gathered from USGS sources. Each data set was tested with each new

interpolation and/or approximation method. Images were created for each resulting

surface using IBM’s DataExplorer package. To better see various aspects of the

surface, both a top view and either a side or angled view of the surface were created.

An unfortunate aspect of this process is the addition of aliasing along the edges of

some of the images. The jaggedness of these edges do not reflect the output of the

reconstruction techniques. This artificial “raggedness” should be fairly obvious to

the reader.

The quantitative results are shown in a table for each data set. This allows

direct comparison of the methods for that particular input. The measurements

include the total squared curvature (C2), the average absolute curvature (Cave),

the root mean square error of the surface as compared to the original contour data

(RMSE1) , and the root mean square error of the surface as compared to a USGS

DEM of the same location (RMSE2) , if applicable.

75
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Figure 7.1: Synthetic data

7.1 Results from Synthetic Data

The synthetic data is a grid of size 257 × 257 containing contours with an

interval of 20 units. For convenience, it is shown again in Figure 7.1. The small size

of the file makes it particularly conducive for testing purposes. The contours also

have sufficient curvature at the southern and eastern ends of the larger hill to cause

problems for thin plate methods. The closeness of the contours near the middle of

the larger hill exemplify digitizing errors. The flat plain ends abruptly at each hill,

testing the continuity properties of the methods.

Although there is no DEM to which to compare, the synthetic data was used to

test the relative effectiveness of each method. The simplicity of the contours allows

one to easily see the difference between methods. Figures 7.2 and 7.3 show the

surface resulting from the application of the thin plate interpolation. As described

in Section 2.1.3, this surface exhibits both the terracing problem and the digitizing

error problem. The former can be seen easily in Figure 7.2 along the southern

and eastern ends of the larger hill, and the south-western area of the smaller hill.

The latter problem can be seen along the steep face of the larger hill. Note, too,

the flattened peaks in Figure 7.3. Table 7.1 shows the quantitative results of each

method. Notice that the total squared curvature of the thin plate interpolation is

8888 and that the average absolute curvature is 0.096. Both of these measurements

must improve in order to see fewer digitizing errors.

Figures 7.4 and 7.5 show the surface constructed using the thin plate approx-

imation technique. Notice how the digitization errors are smoothed considerably.

Some of the terracing, if it was not too pronounced originally, is also improved; see
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Method C2 Cave RMSE1

Thin plate interpolation 8888 0.096 0.00
Thin plate approximation 1031 0.056 0.69
Thin plate under tension 11501 0.068 0.00
IC method 1356 0.062 0.88
Gradient Lines method 980 0.053 0.69
MIC method 804 0.046 1.52
Fast Spline (interp.) 17068 0.094 0.00
Fast Spline (approx.) 852 0.048 1.27

Table 7.1: Results from applying methods to synthetic data

Figure 7.2: Synthetic data: Thin plate interpolation, top view

the south-western edge of the smaller hill. However, the terracing in between the

larger contours of the larger hill is still present. The table shows that the total

squared curvature dropped to 1031, corresponding to the much smoother surface.

In exchange for this smoothness, the RMSE1 rises, but is still very low.

It was hoped that adding tension to the thin plate would reduce the terracing

effect. This method can not smooth out digitizing errors because it is a true inter-

polation technique.4 Figures 7.6 and 7.7 show the resulting surface. It is obvious

that this method does not provide a good surface in areas of high contour curvature.

In these areas, the surface acts like a rubber membrane stretched taught over the

contours, yielding sharp edges. This is further supported by the high total squared

4Allowing tension in a thin plate approximation yields a very smooth surface, but one where
the highest elevation of the surface is extremely compromised (i.e., the RMSE1 is very high).
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Figure 7.3: Synthetic data: Thin plate interpolation, side view

Figure 7.4: Synthetic data: Thin plate approximation, top view

curvature reported in Table 7.1. Note also that the tops of the peaks are completely

flattened.

The thin plate approximation has been shown to reduce the digitizing prob-

lems. The main focus of the IC method is therefore to reduce the terracing effect.

Indeed, Figures 7.8 and 7.9 show a marked improvement in the terracing problem

areas while still exhibiting good curvature and RMSE1 measures. The improve-

ment in the terracing is further supported by looking at diagonal profiles as shown

in Figure 7.10. Both the thin plate interpolation and approximation show “sags”

between some contours, whereas the IC method shows better slope continuity in

those areas. The thin plate methods also exhibit some Gibbs phenomena at the

junction of the hills and the flat plain. Note that the IC method is shown only using

the thin plate approximation to produce the final surface. As shown previously, the

thin plate interpolation produces surfaces that are not very smooth.

Figure 7.5: Synthetic data: Thin plate approximation, side view
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Figure 7.6: Synthetic data: Thin plate under tension, top view

Figure 7.7: Synthetic data: Thin plate under tension, side view

Figure 7.8: Synthetic data: IC method, top view

Figure 7.9: Synthetic data: IC method, side view
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Figure 7.10: Synthetic data: Profiles of thin plate interpolation, thin
plate approximation, and IC methods

The Gradient Lines method is another attempt at correcting the terracing

problem. In this case, splines that follow the steepest slope are computed. Fig-

ures 7.11 and 7.12 show the surface which is very similar to the surface created by

the IC method. The curvature is slightly better for the gradient method as shown

in the table. The ridgeline is slightly smoother in Figure 7.12. The Gradient Lines

method is compared to the IC method in profile form in Figure 7.15.

The MIC method is very similar to the IC method. As a result, the perfor-

mance of the MIC method is also very much the same. The difference results from

five iterations of the Gaussian smoothing function which lowers the total curvature.

While the interpolating smoothing function results in a poor surface, the surface

produced using the approximating smoothing function results in a very smooth sur-

face. Figures 7.13 and 7.14 show the surface very much like the IC surface, but

just a bit smoother. The price of achieving such smoothness is accuracy. Table 7.1



81

Figure 7.11: Synthetic data: Gradient Lines method, top view

Figure 7.12: Synthetic data: Gradient Lines method, side view

shows very good curvature figures relative to the previous methods. However, the

RMSE1 is the highest of all methods. It is still quite acceptable if USGS standards

are of interest. The MIC method is also included in the profile plot depicted in

Figure 7.15. This method is virtually indistinguishable from the IC method.

The Fast Spline method is the last method tested. Figures 7.16 and 7.17

show the method in conjunction with five iterations of the Gaussian interpolating

Figure 7.13: Synthetic data: MIC method, top view
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Figure 7.14: Synthetic data: MIC method, side view
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Figure 7.15: Synthetic data: Profiles of IC, Gradient Lines, and MIC
methods

smoothing function. Although the ridge line of the large hill is well preserved, the

contours are visible because of aliasing errors. The rough areas also explain the

poor curvature values shown in the table. The general shape of the surface is quite

good, without obvious terraces. The substitution of the approximating Gaussian

smoothing function for the interpolating function results in a marked improvement

of the surface which is depicted in Figures 7.18 and 7.19. The curvature also improves

while the RMSE1 rises, as one would expect. Figure 7.20 shows profiles produced

by this method compared to the MIC method. Notice that the splines do not follow

the contours quite as well as the MIC method. The splines are computed in the
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Figure 7.16: Synthetic data: Interpolating Fast Spline method, top view

Figure 7.17: Synthetic data: Interpolating Fast Spline method, side view

horizontal and vertical directions, while the plot shows a diagonal profile. This shows

the weakness of the Fast Spline method. The slightly poorer surface produced by the

Fast Spline method is mediated by the fact that it is the fastest of all the methods.

As a final note, both methods show a smoother transition between the hills and the

flat plain.

7.2 Results from USGS Data

In this section, we show the results of our algorithms using USGS contour

data. Because of the thin plate interpolation’s rather poor performance, only the

thin plate approximation is used in conjunction with the IC and gradient lines meth-

ods. Similarly, the use of the Gaussian interpolating smoothing function produces

surfaces with poor curvature. Thus, for the MIC and Fast Spline methods, only the

surfaces resulting from the use of the Gaussian approximation smoothing function

are shown.
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Figure 7.18: Synthetic data: Approximating Fast Spline method, top
view

Figure 7.19: Synthetic data: Approximating Fast Spline method, side
view

7.2.1 Mount Washington, New Hampshire

The first contour file containing USGS data is taken from Mount Washington,

New Hampshire. The original DLG was cropped to include the peak and some of

the nearby ravines.5 The contours are shown in Figure 7.21. The ravine shown in

the south-western portion of the map is the famous Tuckerman Ravine where some

of the first ski races in the U.S. took place. It is also only of the few areas in the

eastern U.S. where avalanches occur. The rasterized contours fill a 800 × 800 grid.

The elevations are in meters and range from 1100 to 1900. The contour interval is 20

meters. This is essential for comparing to USGS RMSE standards. Unfortunately,

a USGS DEM of the same area was not available.

Figures 7.22 and 7.24 show the surface resulting from the thin plate inter-

polation method. The terracing is painfully obvious. The peak is also completely

flat. The sharp edges along each contour result in very poor curvatures as shown in

Table 7.2. The thin plate approximation, shown in Figures 7.23 and 7.25 are much

5The map is rotated one quarter turn in the clockwise direction; that is, North points to the
right.
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Figure 7.20: Synthetic data: Profiles of MIC, spline interpolation, and
spline approximation methods

Figure 7.21: Contours of Mt. Washington, NH
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Method C2 Cave RMSE1

Thin plate interpolation 153805 0.238 0.00
Thin plate approximation 17001 0.095 0.59
IC method 23279 0.104 1.92
Gradient Lines method 15623 0.083 0.59
MIC method 6376 0.060 1.73
Fast Spline method 8048 0.070 1.53

Table 7.2: Results from applying methods to Mt. Washington contours

Figure 7.22: Mt. Washington:
Thin plate interpolation, top view

Figure 7.23: Mt. Washing-
ton: Thin plate approximation,
top view

smoother, but still exhibit very large terraces. While the smoothing of the edges

is a large factor in the improved total squared curvature and average curvature,

it is ironic that the terraces themselves also contribute to the better quantitative

measures. Consider Figure 7.26. It shows the relative curvature of the thin plate

approximated surface. The darker shades indicate higher curvature. In flat areas,

which represent large terraces, the curvature is very low, contributing very little to

the total squared curvature.

Although the thin plate approximated surface yields good curvature, there is

significant terracing over the entire area. The IC method, shown in Figures 7.27

and 7.29, exhibits much less terracing. However, the total squared curvature is
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Figure 7.24: Mt. Washington: Thin plate interpolation, angled view

Figure 7.25: Mt. Washington: Thin plate approximation, angled view

actually higher than the thin plate approximation! As described in Chapter 3,

the intermediate contours may not be quite complete or in precisely the correct

location. The intermediate contours generated for the Mt. Washington data is

shown in Figure 7.28. In areas where the contours are extremely close, there will be

many new elevation points computed by the IC method. Some of those elevations

may be erroneous. The final step of the thin plate approximation will smooth out

most of these errors, but some will still remain. Figure 7.30 shows the relative

curvature of the IC method. The surface is smooth almost everywhere, with a few

exceptions in areas where the contours are very close together. The situation is

further depicted in Figure 7.31. This plot shows the number of grid points with

a given absolute curvature. The thin plate interpolation shows the most points
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Figure 7.26: Mt. Washington: Relative curvature of thin plate approxi-
mation

with a given curvature and the fewest points with a curvature of zero. The thin

plate approximation has more points with an absolute curvature of about 0.1. The

IC method has more points with a curvature of zero, but a few more with higher

curvature. Thus, the IC method can show a surface which is generally smoother

at the expense of some poor local curvature. The performance in some local areas

creates the somewhat higher total squared curvature of the IC method relative to

the thin plate approximation. This also bears out the weakness of some of the

quantitative measures, as it seems rather obvious that the IC method produces a

generally better surface.

The Gradient Lines method yields a good surface, both qualitatively as shown

in Figures 7.32 and 7.34 and quantitatively, as shown in the Table 7.2. The RMSE1

is very low, identical to the thin plate approximation, whereas the total squared

curvature and the average absolute curvature are both less. The MIC (Figures 7.33

and 7.35) and Fast Spline (Figures 7.36 and 7.37) methods both fare very well. In

both cases, ten iterations of the Gaussian smoothing were used. The curvatures are

both very low, about half of the next best method (Gradient Lines). As is to be

expected using the Gaussian smoothing, the RMSE1 is slightly higher. However, the
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Figure 7.27: Mt. Washington: IC
method, top view

Figure 7.28: Mt. Washington: In-
termediate contours

Figure 7.29: Mt. Washington: IC method, angled view

RMSE1 of 1.73 for the MIC method corresponds to an error of only 1.7 meters. The

USGS RMSE standards for the highest level DEMs is one-third contour interval, not

to exceed seven meters. The contour interval of the Mt. Washington data is 20; a

RMSE1 of 1.7 is well below the USGS standards. Figure 7.38 shows the curvatures

of all of the methods.
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Figure 7.30: Mt. Washington: Curvature using IC method
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Figure 7.31: Mt. Washington: Plot of curvatures comparing first three
methods



91

Figure 7.32: Mt. Washington:
Gradient Lines method, top view

Figure 7.33: Mt. Washington:
MIC method, top view

Figure 7.34: Mt. Washington: Gradient Lines method, angled view
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Figure 7.35: Mt. Washington: MIC method, angled view

Figure 7.36: Mt. Washington: Fast Spline method with approximating
Gaussian smoothing, top view
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Figure 7.37: Mt. Washington: Fast Spline method with approximating
Gaussian smoothing, angled view
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Figure 7.38: Mt. Washington: Plot of curvatures for all methods
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Figure 7.39: Crater Lake: Con-
tours

Figure 7.40: Crater Lake: USGS
DEM, top view

Figure 7.41: Crater Lake: USGS DEM, angled view

7.2.2 Crater Lake, Oregon

This section shows the results of our methods using USGS contour data for

Crater Lake, Oregon. The grid size is 900 × 900, the elevations are in feet ranging

from 6200 to 7680, and the contour interval is 40 feet. The horizontal measurements

are in meters. The original contours are shown in Figure 7.39. A USGS DEM is

available for this contour map. The DEM, which has 30 meter resolution, is shown

in Figures 7.40 and 7.41. Recall that RMSE2 in the table refers to the RMSE

of the surface compared to the DEM. Furthermore, all methods yield an RMSE2

that is well within the USGS Level 3 quality standards, the highest quality level.

The DEM is extremely smooth, but because of its poor resolution, it is not very

detailed. The lake is in the lower south-western corner. This is a good test file due

to its containing areas of both steepness and flatness.
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Method C2 Cave RMSE1 RMSE2

Thin plate interpolation 351121 0.223 0.00 8.75
Thin plate approximation 72987 0.138 1.29 8.69
IC method 93170 0.118 1.93 5.28
Gradient Lines method 72709 0.107 1.29 5.48
MIC method 29089 0.070 4.71 5.13
Fast Spline method 37633 0.082 3.96 5.46

Table 7.3: Results from applying methods to Crater Lake data

Once again we begin by showing the result of the thin plate interpolation in

Figures 7.42 and 7.44. The terracing effects are obvious and result in a surface

with high curvature as shown in Table 7.3. The thin plate approximation, shown in

Figures 7.43 and 7.45, smoothes the surface considerably, as was the case with the

previous test files. The area in which the contours are very dense (the south-west

corner) is very smooth, while terracing is prevalent in the less steep areas.

As was the case with the Mt. Washington data, two iterations of intermedi-

ate contours, shown in Figure 7.46, alleviate the terracing situation. The final IC

surfaces are shown in Figures 7.47 and 7.48. Several anomalies present themselves,

however. Notice, for example, the small indentation present just south-east of the

center of the surface in Figure 7.47. The weakness of the IC method is the failure of

the intermediate contours to be generated in all situations. In Figure 7.46, one can

see that new intermediate contours were not generated in the area in question. The

small indentation is the result of the thin plate approximation filling the area rather

poorly. Other small artifacts are observable in the surface and are representative

of the same problem. The MIC method was developed partially to help resolve

such problem areas. Finally, because the contours were so widely spaced in the

input, some small terracing is still visible in the north-west and north-east corners

of Figure 7.47.

The presence of these errors account for the curvatures being higher than the

thin plate approximation. However, while the RMSE1 is just slightly higher for

the IC method, its RMSE2 , that is, the RMSE compared to the USGS DEM, is

almost 40% lower. This indicates that the surface as a whole is very accurate, at the
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expense of some local roughness. We can also inspect a profile from the thin plate

approximation and IC methods, shown in Figure 7.49. This graph clear indicates

that the IC method follows the contours much better than the other methods with

much less of the terracing phenomena.

The resulting surface from the Gradient Lines method is smoother than the

result from the IC method as well as the thin plate approximation, as indicated in

Table 7.3. The RMSE1 is also lower than for the IC surface, although the RMSE2 is

just slightly higher. The surface itself is free of terraces, and looks very good in the

areas containing closely spaced contours. However, the surface exhibits some small

bumpiness in the flatter areas, most likely due to poor gradient values computed

from the initial thin plate surface. Some of these small anomalies can be seen in the

profile plot in Figure 7.56.

The MIC method was run with ten iterations of Gaussian smoothing. The

surface created by the method, shown in Figures 7.51 and 7.53, are somewhat similar

to the IC method, as might be expected. The Gaussian function does a much better

job at creating smooth surface, as indicated in the table. Remarkably, the RMSE2

is still very good and is actually lower than the IC method.

Lastly, we come to the Fast Spline method. Recall that this is the fastest

method. Some slight terracing is observable in Figures 7.54 and 7.55. There are

also a few small anomalies. However, the curvature remains excellent (see Table 7.3)

as does the RMSE2 . Finally, the profiles shown in Figure 7.56 show that the Fast

Spline method follows the contours nearly as well as the more computationally

expensive Gradient Lines and MIC methods. Thus, there is a gain in computational

speed in return for slightly decreased accuracy.
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Figure 7.42: Crater Lake: Thin
plate interpolation, top view

Figure 7.43: Crater Lake: Thin
plate approximation, top view

Figure 7.44: Crater Lake: Thin plate interpolation, angled view

Figure 7.45: Crater Lake: Thin plate approximation, angled view
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Figure 7.46: Crater Lake: Two it-
erations of intermediate contours

Figure 7.47: Crater Lake: IC
method, top view

Figure 7.48: Crater Lake: IC method, angled view
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Figure 7.49: Crater Lake: Plot of profiles for first three methods

Figure 7.50: Crater Lake: Gradi-
ent lines method, top view

Figure 7.51: Crater Lake: MIC
method, top view
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Figure 7.52: Crater Lake: Gradient lines method, angled view

Figure 7.53: Crater Lake: MIC method, angled view

Figure 7.54: Crater Lake: Fast Spline method, top view

Figure 7.55: Crater Lake: Fast Spline method, angled view
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Figure 7.56: Crater Lake: Plot of profiles for last three methods
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Method C2 Cave RMSE1 RMSE2 # Errors
Thin plate approximation 45628 0.080 0.058 16.539 40
IC method 41228 0.059 0.458 15.973 8
Gradient Lines method 25894 0.052 0.068 16.425 13
MIC method 12905 0.035 1.483 15.968 5
Fast Spline 29685 0.057 1.240 16.034 6

Table 7.4: Results from applying methods to Bountiful Peak file.

7.2.3 Bountiful Peak, Utah

Bountiful Peak is the area of our last data set. Like the Crater Lake data, it

is derived from a USGS DLG, this time from a map representing Bountiful Peak

in Utah. For this map, we chose a 2100 × 2100 grid to test the robustness of our

methods. The elevation is in feet, ranging from a low of 6720 to a high of 8700. The

contour interval is 40 feet. The horizontal units are in meters. The USGS DEM

is shown in Figure 7.57. Just as with the Crater Lake DEM, it is smooth, but has

only 30 meter resolution. The original contour data is shown in Figure 7.58. Notice

how the contours are more evenly spaced, except in the very southern portions of

the map.

Because all of the previous input files have shown that the thin plate interpo-

lation does not produce a good surface, the method is not used in conjunction with

the Bountiful Peak data. The thin plate approximation is used as a baseline, and it

returns predictable results as shown in Figures 7.59 and 7.60. The contours are ob-

vious once again. Note the curvatures and RMSE values in Table 7.4. The RMSE2

is especially high, although it still falls into the Level 2 USGS DEM quality category.

Recall that the maximum RMSE for a Level 3 DEM is one-third contour interval,

which in this case is 13.33 feet. The table also contains an additional column which

gives the number of grid points that exceed one contour interval (40 feet), which

is the maximum allowed error for individual points in a USGS Level 3 DEM. It is

possible that the DEM boundaries do not match exactly the DLG boundaries which

could account for the rather high RMSE2 . However, the comparison of the RMSE2

is still valid across the same input data.

The IC method certainly gives a qualitatively better surface, as shown in
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Figure 7.57: Bountiful Peak: USGS DEM

Figure 7.58: Bountiful Peak: Contours
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Figures 7.62 and 7.63. Some slight terracing exists in the southern areas where

the contours are widely spaced. Compared to the thin plate approximation, the

curvature of the IC surface is only slightly improved, as is the RMSE2 . The RMSE1

rises somewhat. The profiles, shown in Figure 7.64 are virtually indistinguishable.

Figures 7.65 and 7.66 show the surface resulting from the Gradient Lines

method. The surface is generally good, as indicated by its good curvature and

RMSE1 . However, in areas where the thin plate approximation fails (in the terraced

areas in the south), the Gradient Lines method fails as well because the gradients

are based on the initial approximated surface.

The MIC method fares very well indeed on this input file. The surfaces are

shown in Figures 7.67 and 7.68. Again, the Gaussian smoothing is probably respon-

sible for the excellent curvature. Note that the RMSE1 is slightly higher.

At last, we come to the final test. Figures 7.69 and 7.70 show the surface

created by the Fast Spline method. Although the total squared curvature is almost

doubled that of the MIC method, it is only slightly higher than the Gradient Lines

method. The RMSE1 and RMSE2 figures are also in between the two other

methods. The surface has a slightly more terraced look. Again, the accuracy suffers

somewhat in exchange for faster computation.
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Figure 7.59: Bountiful Peak: Thin plate approximation, top view

Figure 7.60: Bountiful Peak: Thin plate approximation, angled view



106

Figure 7.61: Bountiful Peak: Two iterations of intermediate contours
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Figure 7.62: Bountiful Peak: IC method, top view

Figure 7.63: Bountiful Peak: IC method, angled view
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Figure 7.64: Bountiful Peak: Profiles of thin plate approximation and
IC methods
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Figure 7.65: Bountiful Peak: Gradient lines method, top view

Figure 7.66: Bountiful Peak: Gradient lines method, angled view
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Figure 7.67: Bountiful Peak: MIC method, top view

Figure 7.68: Bountiful Peak: MIC method, angled view
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Figure 7.69: Bountiful Peak: Fast Spline method, top view

Figure 7.70: Bountiful Peak: Fast Spline method, angled view



CHAPTER 8

All the words created cognitive dissonance.

– Charles Stewart

Research Contributions and Future Work

This chapter summarizes the research contributions contained in this thesis. It will

also explore the relative merits and drawbacks of each of the new surface generation

methods. We conclude with a discussion of problems and directions for future work.

8.1 Summary of Research Contributions

This thesis discussed the importance of Digital Elevation Models (DEMs) in

the Geographic Information Systems (GIS) community, and the relative scarcity

of accurate data. While there have been many approaches to DEM and general

surface reconstruction, most techniques still produce surfaces with qualitative and

quantitative defects. We first presented the method of surface reconstruction using

the thin plate model, and concluded that the surfaces so constructed, while smooth,

are not very accurate and often exhibit unnatural terracing. We presented four new

methods which all provide better surfaces than thin plate methods alone. All of the

methods were tested with synthetic and USGS data and analyzed for smoothness

and accuracy.

The first to be explored was the Intermediate Contours, or IC, method. The

general approach is similar to that reported by Christensen [15], but the computation

is done in a much different manner. The IC method creates new contours in between

existing contours in order to fill in good elevation approximations in areas where thin

plate methods fail. Once the intermediate contours are generated, the thin plate

approximation is applied to compute the final, smooth surface. This method fared

112
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very well with the Crater Lake data and not as well with the Mt. Washington and

Bountiful Peak data. This is not surprising, as the Crater Lake map exhibits large,

flat portions which are prone to extreme terracing. Its computational performance

is on par with thin plate methods. Thus, one may conclude that this method is a

good choice if the input map contains contours with large, horizontal spacing.

The Gradient Lines method was the second to be discussed. In this new

method, paths are created which join local minima and maxima. The paths follow

the steepest slope. The potential weakness of this method is that the slope is found

via gradients derived from an initial surface. The initial surface is computed using

the thin plate approximation technique which is prone to terracing in many circum-

stances. Thus, an accurate gradient may not always be found, limiting the exactness

of the gradient line fit. Once the path is determined, Catmull-Rom splines are used

to interpolate which are very accurate and very smooth, having C2 continuity. The

final step in the process is to smooth the global surface with the thin plate approxi-

mation. This method proved to be the best of all new methods in regard to RMSE1.

The total squared curvature was also better than the IC method for all of the USGS

data. Where it fared poorest in terms of total squared curvature was on the Crater

Lake data. This makes intuitive sense because this file has the largest flat areas,

which in turn causes problems for the thin plate approximation. Therefore, there

are flat areas which do not return an accurate gradient estimate. This method is

a good choice overall, but especially for files that do not have large flat areas. Its

performance of O(n3) is rather high in exchange for its accuracy.

It was recognized that the IC method had potential but that the thin plate

approximation portion did little to contribute to its performance. The MIC method

is an outgrowth of the method that needs no thin plate processing. Intermediate

contours are generated until the surface is almost completely computed. A new

method for computing peaks using Hermite splines was presented. Inverse-distance

weighting, normally not a good choice for interpolating, was shown to be a good

choice for the small gaps remaining in the surface. Finally, Gaussian smoothing is

used to create the final surface. This new method created surfaces that always exhib-

ited the lowest total squared curvature, while still maintaining acceptable RMSE1
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and RMSE2 values. In fact, the RMSE2 was lowest for both applicable USGS files.

Although it is difficult to quantify, its performance of roughly O(n2 log n) is on par

with the best thin plate algorithms while producing smoother and more accurate

surfaces.

Finally, a new technique employing Catmull-Rom splines in only the horizontal

and vertical directions was examined. By interleaving the splines horizontally and

vertically, bias in the final surface is eliminated. The splines perform very well,

and in conjunction with the Gaussian smoothing filter, generate surfaces that had

consistently good curvature measures which were only slightly higher than the MIC

method, while returning RMSE1 values that were better. The RMSE2 values were

just above the MIC method. Thus, the method performs admirably on all of the

files, and has a cost of only O(n2). In real terms, a surface can be generated by the

Fast Spline method in only minutes, compared to any of the other methods which

may take hours. For a good surface with an acceptable level of errors, the Fast

Spline method is a good choice. For most real-time applications, this method would

probably prove adequate for displaying surfaces.

8.2 Future Work

As work progressed on this thesis, it became apparent that many techniques

can be employed to reconstruct surfaces from contour data. This thesis explores

only a few possibilities. Some general directions for future work involve fitting

different portions of the various algorithms together. For example, once a gradient

lines surface is computed, instead of creating the final surface with the thin plate

approximation, the techniques in the MIC method could be employed. This may

generate a smoother surface which would be computationally more efficient.

There are many specific problems which may be addressed in the new methods:

• IC and MIC methods: the intermediate contours are generated by finding

the closest neighbor using Bresenham’s circle algorithm. This algorithm is

not optimal in that it may miss the closest neighbor because of the nature of

digitizing in a circular fashion. It is also not very computationally efficient.
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A better breadth-first search could be found that would enhance eliminate or

enhance both problems.

• Gradient Lines method: while this method is theoretically good, the obvious

drawback to this method is its reliance upon the thin plate approximation

surface for the gradients. Since it is known that such an approximation is

flawed, especially in flatter areas, the gradients must be flawed in those areas

as well. Perhaps the use of the Fast Spline method or some other direct method

would enhance performance. A second problem is that due to the nature of

a regular grid, the gradient direction must be rounded to one of node’s eight

neighbors.

• Fast Spline method: although smooth surfaces are generated by this method,

the RMSE1 and RMSE2 are somewhat compromised due at least in part to

the fact that splines are run only in two directions. The addition of diagonal

splines may make the surface more accurate while adding little computational

cost.

Another research direction is in the mechanics of the surface reconstruction

system and the display of output surfaces. At present, the software is command-line

driven and very difficult to use, especially for a non-expert. A GUI which would

provide a better interface would enhance the system considerably. Furthermore, an

especially valuable feature would be the display of surfaces, not only when they are

complete, but also as they are computed. For example, it would be interesting to see

the result of intermediate contours before any subsequent processing is done. This

might show the relative merits or drawbacks of each part of the system, allowing the

user to fine-tune the overall surface reconstruction. It may also allow the designer

to determine the problem areas in the methods.

It is apparent that current accuracy and smoothness measures are not ade-

quate. New methods for determining the validity of a surface should be explored.

This may take the form of looking at additional information in the surface, such as

the slope, or other statistical measures to compare surfaces to existing DEMs.

Finally, an interesting method that might apply to the creation of surfaces is
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conformal mapping. A conformal map is a transformation of a plane that preserves

angles. Contours would be mapped to a surface for which accurate interpolation

techniques exist. Once the interpolation is done, an inverse transformation would

map the surface back to the original plane.
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APPENDIX A

Trying is the first step towards failure.

–Homer Simpson

...since the mind of Odysseus has not wholly failed in you,

there is hope for the future, and I tell you that you will succeed.

– Homer[45]

Failed Methods

This appendix discusses, briefly, some methods that were examined and imple-

mented, but which did not compute adequate surfaces or otherwise provide im-

provements to reconstruction techniques.

A.1 Pre-processing to Improve Performance

The thin plate methods are known to be computationally expensive. Straight

iterative methods may perform as poorly as O(n6) for a n×n grid. Although multi-

grid methods speed the process to O(n2 log n) it is difficult to convert algorithms to

the process. An observation regarding the thin plate method in general is that it

takes quite a while for non-data points to achieve a magnitude similar to the initial

data points. Thus, we computed an O(n2) initial surface by computing points along

rows of the grid based on the last known contour elevation. This resulted in a very

terraced initial surface that would be smoothed by the thin plate method. The

actual result was that the performance was not significantly improved, and that the

resulting surfaces were sometimes less accurate.
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A.2 Cloth as a Model

An interesting idea was to use cloth as a material to drape over the contours

instead of a thin plate. The idea grew out of the papers from Weil [87] and Breen et

al [7, 8]. Due to the nature of cloth, it would be able to provide a true interpolation

without exhibiting Gibbs phenomena. However, if cloth were to be draped over the

contours, it would naturally sag due to gravity, which is incorporated in Breen’s

model. The idea was to compute the surface upside-down, and let gravity act in an

inverted fashion on the surface between contours. Unfortunately, it was not possible

to control the “gravity” so as to create a realistic surface. The result was that in

areas where thin plate methods typically produce terraces, the cloth model produced

upward-facing bulges.

A.3 Pruning Input Contours

Eklundh and Mårtensson [24] suggest that, due to digitization errors, it is

helpful to actually eliminate some of the points in the contour data. The decision as

to which points to eliminate is somewhat problematic; one idea is to simply remove

every nth point along a given contour. The resulting surfaces are very much like the

thin plate approximation albeit with less control over the RMSE1 .

A.4 Increasing Grid Resolution

A similar idea to the pruning of input contours is to increase the grid resolution.

Because many points in close proximity on the same contour can result in flat spots

in the surface using thin plate techniques, increasing the resolution would spread out

such points. The thin plate would then have additional area in which to flex to create

a smoother surface. However, we found that the increased resolution exacerbated

the terracing problem by increasing the distance between consecutive contours.

A.5 Weighted Thin Plate Interpolation

One of the deficiencies of the thin plate interpolation or approximation is

that there is no provision for preserving slope continuity across the contour. By
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definition, the steepest slope is orthogonal to the tangent of a point on a contour.

We attempted to modify the thin plate equations to take this fact into account by

weighting points along the orthogonal somewhat higher than the rest of the points

in the computational neighborhood. Our attempt failed but the approach seems

interesting.

A.6 Adaptive Fitting

Fasshauer suggests that some data points on a surface contribute more cur-

vature errors than others [28]. The general scheme is to produce a surface, then

discard data points which account for the highest curvatures. The surface is recom-

puted and the cycle repeated until the desired accuracy is achieved. In applying this

to our methods, a thin plate surface was computed, and the data points with the

most curvature were discarded. The surface only showed modest improvement until

many of the offending (high curvature) points were discarded. Since the points that

showed poor curvature tended to be clustered in the same location, many points

were deleted from the same contour line which, in effect, deleted the entire contour

in that area. This created a surface which therefore ignored significant portions of

some contours which resulted in very poor RMSE1 figures.


