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Abstract

We describe several programs working with 1201x1201 gridded (array) terrain elevation data:
determining the viewshed of an observer, and the visibility indices of all points, converting from
agridtoaTIN, lossdessy and lossily compressing a grid, and interpolating from contours to a
grid. The intent isto integrate these, and new, programs, into a test suite the better to understand

hypsography.
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Introduction

Hypsographic (elevation) data can be represented in various formats, including Triangulated Irregular Networks
(TINSs), grids or arrays, and contour lines. The various formats compete on factors sich as complexity, size, and
acauracy; it isnot clea which will eventualy dominate. Since data may often be available in only one format, there
isanedl for conversion agorithms. Since a onversion is generally only approximate, there is a neel for a measure
of goodness Altho the smplest criterion is the roa-mean-square (RMS) error of the gproximation, more
sophisticated criteria, such as the dfed on important cartographic properties such as visibility and drainage would
be more useful.

Many (but not al) of the techniques described here ae based upon classc ideas, known for decades. However,
useful new techniques and packages from Mathematics and Computer Science ae now avail able, such as multigrids
and Matlab. This makes old ideas, such as diredly solving a heat-flow (Laplacian) partia differential equation on a
large grid, feasible for the first time. Also, larger datasets raise new spedal cases. Finally, faster and larger hardware
all ows new implementation techniques, e.g., a program with arrays of 10,000,000 elementsis now routine.

We try to use general purpose data structures and algorithms, which are atractive because they have benefitted from



the larger community eff ort devoted to improving them. This is analogous to the agument for using Open Source
Software instead d proprietary packages. Notable commericd failures of spedal-purpose HW and SW include: Lisp
machines, floating point processors, database engines, spedal graphics engines, and most parallel machines. Finaly,
careful agorithm implementation helps to keep the amde small and fast. The following sedions will describe the
various components of our terrain elevation research program.

Conversion from DEM to TIN

Various programs for extracting a Triangulated Irregular Network from a set of elevation points exist (altho some
have been demonstrated only on toy datasets); perhaps the first was Franklin (1973. A regular grid of data is
somewhat harder to processthan arandom array of points because of various degeneracies such asthe most deviant
point in atriangle being on an edge, causing ane of the three new triangles to degenerate to a line segment. Our
program, Franklin (1994, can processa complete, 1201x1201 level-1 DEM, producing 200,000 triangles.

This conversion processalso shows the difficulty of predicting the behavior of even a simple idea One might exped
that splitting a triangle into threesmall er triangles, at its worst point, reduces the maximum deviation. However, as
various reseachers have observed, sometimes the maximum deviation doubles. Altho unexpeded, this isn't a
problem sincewhen the new worst triangleis lit, the max deviation drops dramaticdly.

Visibility

Consider the devation of aregion of terrain, together with an observer and target(s). Can the observer seethe target?
What targets can the observer see? Were ae the best places for the observer? Wedescribe some eisting programs
to answer these questions, and then propose future work. This is based on the PhD work of Ray (1994. For more
detail s, seeFranklin & Ray (1994). All these programs are very efficient on large databases.

Viewshed

Program vi ewshed finds the viewshed, or visibility polygon, or the set of pointsin theterrain that can be seen by a
given observer who may be a spedfied height above the surface Although a viewshed is defined only for some
target height, vi ewshed also computes the minimum visible elevation, or the lowest height at the point that is
visible by the observer, of every point in theterrain.

Vi ewshed operates by working aut from the observer in sguare rings. The iteration invariant, which is known for
each point of onering before the next ring is computed, isthe minimum el evation above that point that is visible. If
the point is visible, then that minimum is zero. Note that these minimum visible devations for a ring encapsulate
most of the relevant terrain eevation information for points indde the ring. Once aring is computed the interior
pointswill not be mnsidered again. To compute the minimum visible devation for atarget point in the next ring out,
aline of sight (LOS) isdrawn from the observer to the target point. This LOS will passbetween two adjacent points
in the ajacent inside ring. The LOS is made to pass between these points at the minimum visible devation. Then,
its elevation at the target becomes the minimum visible devation of the target.

Sinceit isimposgble for one devation post to completely represent the devation throughout a square of terrain, and
imposshle for two posts to represent the devation dong the whole line segment between them, thru which the LOS
is passng, some approximation is required. This can be biased as desired. The LOS may be made to pass between
the two adjacent points at an eevation linealy interpolated from itsrelative distance between them, or at the greater
of their two elevations, or at the lessr elevation. The firsg method (interpolation) is perhaps the most accurate,
although it has an subtle uncertainty that grows with the ring sze. The second (max) biases the minimum visible
devations on the high side, while the third (min) biases the minimum visible devations in the low diredion. This
meansthat for a given target elevation, we @an classfy each point in the terrain thus:

1. target pointsthat are almost certainly hidden, sincethe minimum visible devation calculated with the min
approximation is above the target elevation.



2. target points that are probably hidden since the target eevation is below the interpolated minimum visible
eevation.

3. target points that are probably visible snce the target elevation is above the interpolated minimum visible
eevation.

4. target points that are almost certainly visible since the target eevation is above the minimum visible
elevation cal culated with the max approximation.

Below isasample of vi ewshed's operating on a 300x300 pieceof the Lake Champlain West level-1 USGS DEM.
Elevation is indicated by color (or shades of gray), as shown on the scale dong the right sde. The observer was
located at the highest point in the terrain, and about 15 meters above ground level. The target was assimed to be
about 15 meters up, the visihility was calculated 3 ways as described above, and the terrain was shaded accordingly.
Unshaded means almost certainly visible, lightly shaded: probably visible, darkly shaded: probably hidden, and
black: amost certainly hidden. Vi ewshed is extremely fagt, all this took about 1 CPU semnd total on a 75MHz
Pentium running Linux.

Figure 1. Samplevi ewshed output

The figure shows that the visibility status of over haf of the points in this example is actually uncertain. That is
quite unexpeded. If this uncertainty isintrinsic to the data, rather than an artifact of our approximate algorithm, then
we have an important subject for future research.

Vix

Vi x finds the vishility index, or the aea of the viewshed, of every point in the terrain. We do not find each point's
explicit viewshed, but rather use sampling techniques to estimate its area For each observer, perhaps 32 rays are
fired out at equally spaced angles towards the edge of the terrain. Along each ray, a subset of the points are seleded,
and a one-dimensiond line-of-sight algorithm is exeauted on them, to compute the number of visible points, in time
linea in the number of points tested. The visibility index of the observer is the fraction of tested points that are
visble.

Vi x then repeds this process for all N? posshble observers. Following are two images: some sample terrain from
South Korea, and the visibility indices of every point, with bright points being more visible.



Figure 2. Sample Terrain Figure 3. Vishility Indices

Some notable points are these: The north-south ridge in the center is sharpened. The lowest region isthe water at the
south nea the west, but its visibility indices are surprisingly high. In contrast, the high mountainous region in the
north center is not so visible. There is often little correlation between eevation and visibility index; for the above
data, the arrelation coefficient is very dightly negative.

Note that our algorithm is performing a classc statisticd sampling and estimation. We estimate the fraction of all
the points that are visible by testing a subset. Assuming that our sampling is uncorrelated with the points' visibility,
computing the standard deviation in our estimate is easy. A ched is adso posshle by dividing the rays aternately
into two groups, computing the visibility index separately for each group, and measuring the sgnificance of the
difference in the means with a T-test. Vi x could be extended to use this adaptively so to fire only the minumum
necessary number of rays.

Siting Observers

Programs vi ewshed and vi x may be used to find a set of observers that jointly can see &ery point as follows.
Usevi x to lig al the points by visibility index, and hence, to find the most visible point. Place the first observer,
Oy, there. Usevi ews hed to find the points that O, cannot see Filter the sorted list of pointsto delete points that O,
can see Find the most visible point that O, cannot see that is the seaond observer, O,. Repeat until the set of
observers can see @ery point.

Comparison to Other Visibility Programs

The programs described here use gridded e evation data. Some others use aTrianguated Irregular Network (TIN).
Although a TIN requires fewer triangles than a grid requires points, each triangle must know its neighbars, which
adds to the data Sze (if thisis stored), or to the time (if this is computed from the points asauiming a Delauney
trianguation). The algorithms are also more complex, and some TIN programs have been demonstrated only on toy
datasets with a few thousand triangles. Admitting that this contradicts our ealier observations concerning spedal
versus genera purpose techniques, here we use algorithms gedali zed to the visibility probem, instead o sower,
general, techniques such as neural nets or simulated anneding.

DEM Compression

For detail s on our compresson techniques for DEMS, seeFranklin & Said (1996). Here ae some new results, on a
level-2 DEM of Bountiful Utah. The standard deviation of the devations is 1096 meters, which would be the RMS
error if the fil e was compressed down to two byteslong (to list only the mean value). This also implies that about 11



bits per point would be heeded w/o compresson.

Our compresson method is Said and Pealman's wavelet program, pr ogcode, Said & Pealman (1993). Losdess
compresson takes 5.234 hits per point (bpp) on this file. Compresgon down to 10, 0.1, 0.03, and 0.01 BPP has
RMS errors of 6.0, 52, 148, and 535 meters, respedively.

Hereisthe origina surface and the cmmpresson to 0.1 BPP.
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Figure 4. Original Bountiful Terrain Figure 5. Lossly Compressed to 0.1 BPP

The approximation shows the general asped of the surface even down at 0.1 BPP, which is a compresgon by a
factor of at least 100 compared to the origina data. At 0.03 BPP, the original surfaceis gill discernable, but serious
artifacts appea.

Interpolating from Contoursto DEM

Interpolating from contour linesto an elevation array is a dassc problem in computationa cartography. First, there
are the traditional heuristics, such as extending straight lines in eight diredions from the test point until they
intersed eight contour lines, then interpolating with a weighted average, as described in Douglas (1983) and, later,
Jones, d al (1986). Similar inverse-distance weighting methods are shown in Watson (1992) and Heine (1986), often
using natura neighbors found by Sibson (1981). These methods can work if the @ntours are not kidney-shaped.
However, an artifact appeas when interpolating a amncentric set of circular contour lines, representing a cone. Since
the outer contour line ae longer than the inner ones, the averaging rule causes the surface between two contour lines
to droop, asif pulled down by gravity, in an unaceptable scall oping or terracing effect.

Partial differential equations (PDEs) can be used to model a surface subject to certain constraints. Good cartographic
introductions to PDEs for interpolation are Tobler (1979, 1986. One simple PDE is the Laplacian, or heat-flow
equation, z«+z, = 0, where z, = d?zldx® etc. The relevance to heat-flow is that, if we map eevations to
temperatures, assume that the contour lines are fixed a known temperatures, and assume that the surface onducts
hea uniformly, then each point on the surface between the @ntour lines will eventually equilibrate to some
temperature, which we map back to eevation. If this equation is solved by iteration on a grid, then the devation of
each point in the aray, whose height is not already fixed, is the average of itsfour neighbars: 4z; = 7.1 + 7z + Zj-
1+ Zj+1. However, the Laplacian also demondrates the terracing artifact.

The more mmplicated thin plate mode minimizes total curvature, similar to fitting a thin shed of metal to fixed
points, whil e minimizing the energy of bending. The partial differentia equation is: z,° + 2z, + z,” = 0; while the
Corresponding iterative E]uaII on on agrid is ZOZU' = 8(Zi-1,j + Zis1 + Zjja + Zi,j+1) - 2(Zi_1’j_1+Zi_1’]‘+1+Zi+1’j_1+zi+1’j+1) - (Zi.
2j t Zisgj + Zij2 + Zijs2) With this equation, information flows across the antour lines, which is desirable. This
method produces lessterracing, but instead demonstrates a ringing effed, similar to a Gibbs phenomenon when a
square wave airve is being approximated by a Fourier series. Intuitively, the surface tries 9 hard to minimize the
curvature, that, when the data is too nonsmoath, the surface has synthetic oscill ations. For example, an interpolation
of the desert floor next to amesawould have this undesirable atifact.



Until a useful forma mode of terrain elevation is available, the desirable characteristics of an interpolation or
approximation agorithm are not obvious, since different attributes conflict with each other. For example, since
geological features are stretched and distorted, an interpolation that is invariant with resped to nonuniform scaling
in x and 'y might be desirable. However, this is hot compatible with any algorithm using neaest points, such as a
Voronoi method. Even alowing wiform scaling is incompatible with any algorithm containing an embedded
congtant distance such as kriging. Again, seamnd-degree @ntinuity might be a desirable attribute, except that the
red world is often not continuous at al. Forcing high-order continuity here will only create falseripples.

The mnclusion isthat visual inspedion may be the best judge of an interpolation or approximation method. We may
not be able to formalize it, but we know a good surface when we seeone. In particular, we @n easily see non-locd
artifacts, such asthe terracing.

If the input data is not exact, then interpolating it, exactly, may be the wrong gperation. Instead, an approximate
surface, which passes nea the data, might be preferable, since it can have other desirable properties, such as
virtually eliminating ringing. This can be realized by asauming that there ae springs between the data points and the
surface and minimizing the total energy of the springs and the aurvature, as done by Terzopoulos (1988.
Unfortunately, theterracing isonly reduced.

Explicitly solving a PDE on an NxN grid, without utilizing the system's sparsity, takes time N°, which is infeasible
for large N. Sparse system solvers and iterative methods are more practicd; their time is proportional to the desired
acauracy. The best current iterative method is the multigrid. It finds an approximate solution on a @arse grid, then
improves the solution on a finer grid, with periodic recurse back to the @arser grid for speal. The multigrid
technique can solve systems with more than 10000x10000 cdls. Terzopoulos (1983 used this method for solving
the thin-plate equation. Douglas (1997) pointsto tutorials, bibli ographies, and software on multigrids.

Voronoi interpolation of the data points is a cmpletely different method, Gold & Roos (1994. Here, a Voronoi
diagram is formed from the data points. The test point isinserted into the diagram, and the aeasits Voronoi polygon
steals from its neighbors are used to weight the neighbors elevations. A Hermite transformation of the weights may
be used to increase the @ntinuity. Voronoi interpolation solves the problem of artifacts such as aurface, dope, or
curvatures discontinuities, sope or curvature discontinuities, and and local elevation extrema. Another promising
ideaisto useterrain-spedfic aiteriaand geomorphological rulesto fit a Bezier surface Schneider (1998. Carrara et
a (1997 find that TIN and grid interpolation methods produce surfaces refleding the ground morphol ogy.

Triangulating the points into a Triangulated Irregular Network, perhaps with a Delauney trianguation, is a related
method, Garcia (1992). Any interpolation method, either bilinea or a higher order spline, may be used inside exch
triangle. However, sometimes atriangle will have all threevertices on the same ntour, causing it to be horizontal,
which is undesirable. Christensen (1987) triangulates closed contour lines to create new elevation lines between
existing contours.

Because linea interpolation may result in surfaces with flat areas, Watson (1992) blends the technique with a
gradient estimation. Huber (1995 deteds features such as ridges and vall eys, interpolates new elevations on them,
and then applies any other method to this enhanced set. This considerably reduces artifacts.

Generaly, the eisting methods have one or more of the following limits. They are often tested only on synthetic,
small, datasets. They may require unbroken contours, or may require that there not be too many contours. They may
generate triangles that are be horizonta, or long & thin, flat peaks, and terraces and ringing. Desirable properties
include local control, variation minimization, interpolation, conformal, smoath peaks and vall eys inside innermost
contours, and no visible evidencein the surface of where the original contours were.

The new methods described here ae based on the PhD work of Gousie (1998.
I nter mediate Contours

Our first new method repeatedly interpolates new contour lines between the original ones, somewhat similar to the
media axis. If two adjacent contouwr lines are: A, at elevation a, and B, a b, then we interpolate at elevation (a+b)
thus. Pick a point on A. Find the dosest point on B (approximating the gradient). The midpoint of AB is on the
desired intermediate @ntour. Our contrarian philosophy is that we don't find the elevation at cetain points, but



rather find points with a certain elevation. The Maximum Intermediate Contours (MIC) method iterates the process
filling ever-finer contours. Alternatively, we @an find intermediate cntours one or more times, then do a thin-plate,
Hermite-spline the peaks, inverse-distanceweight other small gaps, and Gaussan-smoath the surface

Gradient Lines

This method answers the problem of the generated surfaces terracing between contour lines by importing the ideaof
lofting from CAGD. It proceads as follows. Generate a first version of a surface by any method. Find its gradient
lines. Note that, on each gradient line, we know only the devations where it crosses the @mntours. Interpolate its
devations in-between. This process smoaths the surface, whil e keeping the interpolation. Springs may be added to
any method, producing an approximation.

The foll owing figures show three approximation methods applied to a 900x900 pieceof the Crater Lake DEM. The
first shows the original contour lines, which are seen to be separated by many pixels, which makes the process
harder. The next threeshow the dassc thin plate, and ou intermediate @ntour and gradient line techniques. We see
that bath our techniques are much smoather than the thin pate, and that the gradient method is best. Our longer
papers quantify this, and show more examples.
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Figure 7. Thin Plate Approx
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Figure 8. Intermediate Contour Approx Figure 9. Gradient Line Approx



Overdetermined Laplacian Solution

The problem with many existing methods is that no information flows acrossthe ntours. This causes terracing.
Our solution is to make the known data points also be the average of their neighbors. The method is to assume that
there ae N? unknowns; i.e., even the known points are unknown. There ae now two types of equations. First, for all
points: 4z; = Z.1j + Z+1j + Zj1 + Zj+1 Seoond, for the known points, we make a equation that they are ejual to
their known values: z; = h; Since there ae now more ejuations than unknowns, none of the ejuations will be
satisfied exactly. That is, no points will be exactly the average of their neighbors, and the known points will not be
exactly their known values. If there ae K points whose devations we know, then there are N*+K equations for the
N? unknowns.

We then do aleast-squares lution in Matlab, to gve an approximate solution, rather than an interpolation. With a
least-squares lution, scading an equation up makes it more important. Let R be the relative weight of the average-
value equations compared to the others. A lower R will cause amore acaurate surface, while ahigher R will cause a
smoather surface A littleinaccuracy goes along way towards smoathing the surface

Hereisatest case mnstructed to stressany contour interpolation algorithm. It consists of four concentric squares, at
a distance of five from each other. The squares sharp corners facilitate artifacts, while the large gap between
adjacent contours al ows interpolated surfaces to droop or terrace Our intuition would desire that a square pyramid
with triangular sides result. However, few algorithms are likely to produce such a surface with discontinuities in the
dope.

For the threeweights of 0.1, 1.0, and 3.0, the maximum errors at the known points are 0.27%, 5.5%, and 12%,
respedivey, while the average arors are 0.01%, 0.6%, and 27%, respedively. That is, by allowing the elevations
of known contour points to vary by an average of 3%, we @n fit a quite smocath surface to the nested squares.
Considering the acauracy standards of most hypsographic data, that may be acceptable. The next figure shows the
original sgquare @ntours, and the smoathly approximated surfacewith R=3.

Figure 10. Overdetermined Laplacian PDE

Note that our overdetermined solution concept is quite different from putting springs on the data points. That is also
an approximation, but it does not try to make the data points to be the average of their neighbors. Absent that, it is
imposshble to make the surfacenot show the original contours.

Various extensons of the overdetermined solution technique ae possble. We might calculate the error on each data
point, then for the lessacaurate points, increase their weights and re-solve. This reduces the max absolute eror, but
increases the mean. The resulting surfaceis dightly less snoath. Alternatively, we might guessthat the points with
large errorsrepresent breaksin the surface slope. Then an reasonable response might be to reduce their weights and
re-solve. We have tested the overdetermined solution technique on grids of up to 257x257 points, and are working
on larger cases.



Future Plans

Our proposed future work is follows. After adding splining to ou TIN, and implementing a drainage basin routine,
combine these various projeds into a test suite, and test how well whether other terrain properties such as drainage
patterns are preserved by these transformations. The goal is better to understand terrain with a view to formalizing a
model of eevation. This flow chart shows how the various parts can fit together.
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