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Abstract. We present two new methods for approximating elevation data from contours
to a grid. The first repeatedly interpolates new contour lines between the original ones. The
second starts with any interpolated or approximated surface, determines its gradient lines, and
does a Catmull-Rom spline interpolation along them to improve the elevations. We compare
the new methods to a more classical thin-plate approximation on various data sets. The new
methods appear visually smoother, with the undesirable terracing effect much reduced.
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1 Introduction

Hypsographic (elevation) data can be represented in various formats, including Triangulated Irreg-
ular Networks (TINs), grids or arrays, and contour lines. The various formats compete on factors
such as complexity, size, and accuracy; it is not yet clear which format will eventually dominate.
Since data may often be available only in one format, there is a need for conversion algorithms.
This paper describes two new methods for converting from the contour format to an array, or grid,
of elevations.

Since the grid will probably be spaced more closely than most of the contour lines, this is an
interpolation problem. The ideal, but to-date impossible, criterion of interpolation quality is as fol-
lows. Start with a theoretical model of hypsography, which would map from random numbers to
random terrains. This would assign a probability to each possible terrain. Just as human heights
can be modeled as a normal random variable, without understanding physiology, it is conceivable
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that a model of hypsography might not necessarily require a deep understanding of geology. In any
case, given such a theoretical model, and given a contour map, a Maximum Likelihood Estima-
tor (MLE) would exist to find the “most likely” interpolated terrain that matched those contours.
Unfortunately, until such a terrain model is available, this approach is infeasible.

Until then, the desirable characteristics of an interpolation or approximation algorithm are not
obvious, since different attributes conflict with each other. For example, since geological features
are stretched and distorted, an interpolation that is invariant with respect to nonuniform scaling in x
and y might be desirable. However, this is not compatible with any algorithm using nearest points,
such as a Voronoi method. Even allowing uniform scaling is incompatible with any algorithm con-
taining an embedded constant distance, such as kriging. Again, second-degree continuity might be
a desirable attribute, except that the real world is often not continuous at all. Forcing high-order
continuity here will only create false ripples.

The conclusion is that visual inspection may be the best judge of an interpolation or approxi-
mation method. We may not be able to formalize it, but we know a good surface when we see one.
In particular, we can easily see non-local artifacts, such as the terracing described below.

There are many methods for interpolating from isolated data points at isolated test points, avail-
able in packages at least since SYMAP. They could be repeated, albeit inefficiently, to interpolate
from the sequence of points along a contour line to create a grid. However, that is certainly slow,
and probably inappropriate, given the nonuniform distribution of contour points.

In the following, � represents elevation. A test point is a point whose � is unknown, but desired.
A data point has a known elevation.

2 History

Interpolating from contour lines to an elevation array is a classic problem in computational car-
tography. First, there are the traditional heuristics, such as extending straight lines in eight direc-
tions from the test point until they intersect eight contour lines, then interpolating with a weighted
average, as described in Jones, Hamilton & Johnson (1986). Similar inverse-distance weighting
methods are shown in Watson (1992) and Heine III (1986), often using natural neighbors found by
Sibson (1981). These methods can work if the contours are not kidney-shaped.

However, an artifact appears when interpolating a concentric set of circular contour lines, rep-
resenting a cone. Since the outer contour line are longer than the inner ones, the averaging rule
causes the surface between two contour lines to droop, as if pulled down by gravity, in a scalloping
or terraced effect. For a thin-plate interpolation, this effect is shown in Figures 4 and 8. This is
unacceptable.

Partial differential equations (PDEs) can be used to model a surface subject to certain con-
straints. Good cartographic introductions to PDEs for interpolation are Tobler (1979), Tobler
(1996).

One simple PDE is the Laplacian, or heat-flow equation, �������������
	�� , where �����	������� � � etc.
The relevance to heat-flow is that, if, we map elevations to temperatures, assume that the contour
lines are fixed at known temperatures, and assume that the surface conducts heat uniformly, then,
each point on the surface between the contour lines will eventually equilibrate to some temperature,
which we map back to elevation. If this equation is solved by iteration on a grid, then the elevation
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of each point in the array, whose height is not already fixed, is the average of its four neighbors:��������������� �"! �$#%���'&(�"! �$#%���)! �*� �+#%���)! �,&(�
. However, the Laplacian also demonstrates the terracing

artifact.
The more complicated thin plate model minimizes total curvature, similar to fitting a thin sheet

of metal to fixed points, while minimizing the energy of bending. Gaussian curvature, commonly
used in geometry, is inappropriate here, since it is zero on a “developable” surface, such as a bent
sheet of paper. Instead we use the (scaled) divergence, or

����� �"! �-#.���'&(�"! �-#/����! �*� � #.����! �,&(�102�������
for

the curvature at a point.
The partial differential equation is:

�435�5 #764�435�8 #9�438:8 �<;
; the iterative equation on a grid is:

64;4����� � = >?����� �"! �@#9���'&(�"! �A#7���)! �*� �B#7����! �:&(��C
0D6E>F����� �"! ��� �B#7����� �"! �:&(�G#9���'&(�"! �*� �B#9���'&(�"! �,&(�:C
0H>F����� 3 ! �A#9���'& 3 ! �A#9����! �*� 3 #7���)! �,& 3 C

With this equation, information flows across the contour lines, which is desirable. This method
produces less terracing, but instead demonstrates a ringing effect, similar to a Gibbs phenomenon
when a square wave curve is being approximated by a Fourier series. Intuitively, the surface tries
so hard to minimize the curvature, that, when the data is too nonsmooth, the surface has synthetic
oscillations. For example, an interpolation of the desert floor next to a mesa would have this unde-
sirable artifact. Figure 1 shows terracing and ringing schematically. The circles are the data points;
the thin lines the interpolated surface.

Figure 1: Terracing and Ringing in an Interpolated Surface

There are hundreds of works on thin-plate interpolation, mainly in the mathematical literature;
we will merely sample them. The survey paper of Bolle & Vemuri (1991) discusses this, and other,
methods. Powell (1997) discusses computational difficulties in interpolating many isolated points
and presents an iterative method for up to I ;4J points. Briggs (1974) uses minimum curvature to
interpolate contours; Gonzalez-Casanova & Alvarez (1985) improved it. Suter (1992) and Duchon
(1976) mention how thin-plate spline interpolation can be expressed thus:

�K�ML%N�PO(�EQ �SRT3�GU�VXW RY� #Z �\[]# Z 3*^ # Z*_ where
R��

is a distance from a known data point and
>`[-a ^ C is the test point. Terzopoulos

(1988) breaks the thin plate when a discontinuity is inferred. Smith & Wessel (1990) adds tension to
the thin plate, to attempt to smooth the Gibbs phenomenon. Sinha & Schunck (1992) uses a 2-stage
method: a moving least squares median, followed by a weighted bicubic spline. One program for
thin-plate interpolation is SphereKit (1996), which can handle up to 500 points per section, using
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methods described in Franke (1982) and Sandwell (1987). One application of this was blending
data sets for GTOPO30(Gesch & Greenlee 1996).

If the input data is not exact, then interpolating it, exactly, may be the wrong operation. Instead,
an approximate surface, which passes near the data, might be preferable, since it can have other de-
sirable properties, such as virtually eliminating ringing. This can be realized by assuming that there
are springs between the data points and the surface, and minimizing the total energy of the springs
and the curvature, as done by Terzopoulos (1988). Unfortunately, the terracing is only reduced.

Explicitly solving a PDE on an b�cdb grid, without utilizing the system’s sparsity, takes timebfe , which is infeasible for large N. Sparse system solvers and iterative methods are more practical;
their time is proportional to the desired accuracy. The best current iterative method is the multigrid.
It finds an approximate solution on a coarse grid, then improves the solution on a finer grid, with
periodic recourse back to the coarser grid for speed. The multigrid technique can solve systems
with more than gih4hXhXhjckgihXh4hXh cells. Terzopoulos (1983) used this method for solving the thin-
plate equation. Douglas (1997) points to tutorials, bibliographies, and software.

Voronoi interpolation of the data points is a completely different method, (Gold & Roos 1994).
Here, a Voronoi diagram is formed from the data points. The test point is inserted into the diagram,
and the areas its Voronoi polygon steals from its neighbors are used to weight the neighbors’ ele-
vations. A Hermite transformation of the weights may be used to increase the continuity. Voronoi
interpolation solves the problem of artifacts such as surface, slope, or curvatures discontinuities,
slope or curvature discontinuities, and and local elevation extrema.

Triangulating the points into a Triangulated Irregular Network, perhaps with a Delauney tri-
angulation, is a related method, (Franklin 1973), (Garcia 1992). Any interpolation method, either
bilinear or a higher order spline, may be used inside each triangle. However, sometimes a triangle
will have all three vertices on the same contour, causing it to be horizontal, which is undesirable.
Christensen (1987) triangulates contours to create new elevation lines between existing contours.
The implementation assumes input data properties such as closed contour lines. Rather than depict-
ing the final surfaces, the paper shows the interpolated contours, on small, optimal, data sets.

Because linear interpolation may result in surfaces with flat areas, Watson (1992) blends the
technique with a gradient estimation. Huber (1995) detects features such as ridges and valleys, in-
terpolates new elevations on them, and then applies any other method to this enhanced set. This
considerably reduces artifacts.

3 New Interpolation/Approximation Methods

We hypothesized and tested various new interpolation/approximation methods, designed with the
following properties: the ability to handle realistic amounts of data, minimizing artifacts, such as
terracing or ringing, and taking advantage of the data being generally arranged along contour lines.
Two successful methods are intermediate contours and gradient lines.

3.1 Intermediate Contours

We wish to find a new contour in between existing successive contours to introduce new elevations
for subsequent processing. It is desirable to find a midpoint between to contours that lies along the
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steepest slope, which is perpendicular to a given contour.
This method uses successive subdivisions. Between two adjacent contour lines, contour l , at

elevation m , and contour n , at elevation o , we interpolate the intermediate contour, with elevationp m
qkoYr:sXt , as follows. Pick a point on l . Find the closest point on n to it; this approximates the
direction of the steepest slope. The midpoint is one point on the intermediate contour.

Successive points on the intermediate contour may be determined. They may not always be ad-
jacent, but that is not a problem because of how they will be used. Next, further, arbitrarily closely-
spaced, contours may be computed. Figure 2 shows a section of Crater Lake, while Figure 3 shows
the interpolated contours.

Figure 2: Crater Lake Original Contours Figure 3: Crater Lake Interpolated Contours

The last phase of the procedure is to complete the surface between the new contours. To reduce
the ringing effect, a thin-plate approximation is applied. The resulting surface is better than one
produced by the thin-plate approximation alone because the terracing effects are reduced due to the
additional intermediate contours.

3.2 Gradient Lines

This method was inspired by the concept of lofting in computer aided design. It is a 2-step process.
First, we determine gradient lines from local maxima to minima on the surface. A gradient line
should intersect a contour line perpendicularly. Gradient lines are calculated from the surface pro-
duced by another interpolation method, such as the thin-plate. The x-component of the gradient is
this: u

t
pFv�wPxEy,z {}|~v�w���y,z { q v�w'x(�"z {*� �]|~v�w�� �"z {�� � q v�w'x(�"z {:x(��|.v�w�� �"z {,x(�]|���v�w'x(�"z {�|.��v�w�� �"z { r

The idea is that, while the original interpolation is unacceptable, its gradient lines are good. At
this point, each gradient is a 2-D line; we know its elevation only where is crosses contour lines.
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The next step is to interpolate elevations along the whole gradient, from the known elevations at
the contours. The 1-D interpolation method is a Catmull-Rom (aka Oberhauser) spline, (Faux &
Pratt 1981), which has a continuous second derivative. The splines must be smoothed to create the
final surface; the thin-plate approximation is applied once again.

4 Experiments

We tested our new approximation algorithms on various sets of USGS DLG contour data. To evalu-
ate the fits, we calculated quantitative parameters such as total squared curvature, average absolute
curvature, and root-mean-square error (RMSE). This table tests three approximation methods on
the Crater Lake data.

Criterion Thin- Intermediate Gradient
plate Contours Lines

Total squared curvature,�����F����� �"� �A�9���'�(�"� �@�9����� �*� �B�9����� �,�(�]�����������\�
72987 93170 72709

Average absolute curvature,���� � �\��� �����*� ����� �"� � �j���'�(�"� ���j����� ��� ���f����� �,�(�����������X� �
0.138 0.118 0.107

Root-mean-square error relative to DEM,¡ �� � � � ��'¢(� �F���£�.¤¥�`� �
, where

¤¥�
is a DEM point. 8.69 5.28 5.48

This shows that the intermediate contours surface has a larger squared curvature, but the gradi-
ent lines method has a slightly lower squared curvature. Both of our methods exhibit better average
absolute curvature. The RMSEs of our methods are significantly better than the thin-plate approx-
imation surfaces and are well within USGS Level 3 standards (the Crater Lake contour interval is
40). However, all these criteria are local properties of the surface, and do not measure artifacts such
as terracing and ringing. For these, visual inspection seems the best method to date. Therefore, we
present images of the surfaces interpolated by the various methods, for visual comparison.

The first test data set is a DLG of Crater Lake, Oregon, with contour lines as shown in Fig-
ure 2. Figure 4 shows a thin-plate approximation, while Figure 5 shows our interpolated contour
algorithm, and Figure 6 our gradient method.

The second test case is Mount Washington, New Hampshire, Figure 7. Figure 8 shows a thin-
plate approximated surface. Figure 9 shows some intermediate interpolated contours, while Figure
10 shows the resulting approximated surface. Figure 11 shows the approximated surface by the
gradient method.

In both cases, our intermediate contour method is better than the thin-plate method, and our
gradient method is the same or better still.

5 Untried Methods

One attractive method not yet implemented centers on the idea of a conformal map, a transforma-
tion of the plane that preserves angles. However, it bends straight lines into curves, and changes
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distances. Any closed curve, even a polygon, can be conformally mapped into a circle. A system
of two closed curves, one inside the other, can be mapped into an annulus, or a ring between two
concentric circles. We know how to interpolate a surface between an annulus. Therefore, the idea
is to map two concentric contour lines to an annulus, interpolate, and inverse map the result. The
problem is that calculating the desired conformal map is too hard. In addition, a new rule would
be needed for a contour line containing two interior contour lines. Nevertheless, this method looks
interesting. It might interpolate kidney-shaped contours better than many other methods.

A second untried method is the use of an MLE. We can reject an interpolated surface that has
terraces at the contour. Although a real surface might have these features, it is very unlikely to
have them exactly at the contours. Can this idea be generalized to select, among all the surfaces
interpolating the contours, that one with the highest “probability?” This remains an open question.

6 Conclusion

Both the intermediate contours and gradient lines method produce surfaces with much reduced ter-
racing compared to thin-plate techniques. The RMSE for both surfaces is also better using the
new methods. In general, the intermediate contours method works well when contours are widely
spaced. The gradient lines method proved better suited to contours that are moderately spaced, due
to the step of finding an approximate surface from which to derive gradients.
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Figure 4: Crater Lake Thin-Plate Approxi-
mation

Figure 5: Crater Lake Intermediate Contour
Approximation

Figure 6: Crater Lake Gradient Line Approx. Figure 7: Mt. Washington Contours
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Figure 8: Mt. Washington Thin-Plate Ap-
proximation

Figure 9: Mt. Washington Intermediate Con-
tours

Figure 10: Mt. Washington Intermediate
Contour Approximation

Figure 11: Mt. Washington Gradient Line
Approximation
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