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Abstract
We present two new pre-processing techniques that improve
thin plate Digital Elevation Model (DEM) approximations
from grid-based contour data. One method computes
gradients from an initial interpolated or approximated
surface. The aspects are used to create gradient paths that
are interpolated using Catmull-Rom splines. The computed
elevations are added to the initial contour data set. Thin
plate methods are applied to all of the data. The splines
allow information to flow across contours, improving the
final surface. The second method successively computes
new, intermediate contours in between existing isolines,
which provide additional data for subsequent thin plate
processing. Both methods alleviate artifacts visible in
previous thin plate methods. The surfaces are tested with
published methods to show qualitative and quantitative
improvements over previous methods.

Introduction
Digital Elevation Models (DEM) are often used to store three-
dimensional elevation data using a regular grid. Because
DEMs are not available for many areas and/or because they
are storage intensive, they are often interpolated or approxi-
mated from sparse data. We have chosen isoline data from
which to compute DEMs because contour maps are readily
available for many geographic locations in the form of Digital
Line Graphs (DLG), a standard product of the United States
Geological Survey (USGS). We use a grid-based approach
because such methods often produce DEMs that preserve
terrain morphology better than other methods, such as those
using a Triangulated Irregular Network (TIN) (Jaakkola and
Oksanen, 2000). Examples of systems that generate DEMs
from contours are TOPOGRID (Hutchinson, 1988; Hutchinson,
1999), available in ArcInfo®, former TAPES-C (CRES, 2004),
and TOPOG (CSIRO, 2004).

Although there are myriad ways of interpolating or
approximating a surface, we have concentrated our efforts on
computing a smooth surface by minimizing its curvature.
The partial differential equation (PDE) that models a thin
plate being draped over the data points is one way to achieve
such a surface. However, because thin plate surfaces mini-
mize the curvature at known points, artifacts such as over-
shoot and terracing often result.

We wish to create surfaces that conform to the original
contour data and that do not need any operator intervention,
such as the addition of break lines or peaks. In this paper,
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we describe a new technique that computes “gradient paths”
that follow the steepest slope. These paths are interpolated
using Catmull-Rom splines to improve the subsequent thin
plate approximation. A second technique computes “inter-
mediate contours” which are used as additional data for a
thin plate interpolation or approximation. The two methods
are shown to produce surfaces that compare favorably, both
qualitatively and quantitatively, to those created by previous
thin plate procedures while adhering closely to the initial data.

Thin Plate Splines
Minimizing the curvature of the surface using a thin plate
model is a common method for computing a DEM, and is
available on commercial GIS products such as ArcView©. In
this section, we review the methods to which we compare
our results. Additional thin plate methods are reviewed in
the next two sections.

The notion of minimizing a thin plate to interpolate or
approximate a surface is an old (e.g., Briggs, 1974) and
trusted technique. Given N data points, where i � {1..N}, the
differential equation that models a thin plate is given by:

(1)

where fi is the force at position i. In practical terms, if the
data is in the form of a mesh of points (x1, y1) to (xn, yn),
and the boundaries are ignored, then using finite difference
techniques, the solution to Equation 1 is the biharmonic
equation (Briggs, 1974):

(2)

where each zi,j represents the elevation at (xi,yj). The equation
need be solved only if the value at a particular zi,j is unknown.

If an approximation is desired, then the computed
surface must only pass near known values. In such a case,
care must be taken so that the surface does not deviate too
much from the known data values. Such an approximation
can be modeled by adding Equation 1 to a function, which
minimizes the total energy E of a system (Jain et al., 1995):

(3)

where � is a regularizing parameter used to achieve a
smoother solution. Choosing a small � results in a close
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approximation of the data, while choosing a large � results
in smoother solution.

A major source of difficulty in the production of smooth
and accurate surfaces from sparse data using the thin plate
approach is that the true terrain may itself exhibit discontinu-
ities. For example, one such discontinuity may be described
as a significant elevation drop between two flatter areas. This
is often the case near cliffs or canyons. Because the thin plate
method does not allow discontinuities, forcing the surface to
be twice differentiable at control points (C2 continuity), an
“overshoot” results in the surface, known as Gibbs’ phenom-
ena (Foley et al., 1990). Figure 1a shows a profile of a thin

plate surface fit to elevations (vertical lines) that exhibits the
problem.

To adjust for the effects of Gibbs’ phenomena, tension is
added to the biharmonic equation (Smith and Wessel, 1990):

(4)

where Txx, Txy, and Tyy represent horizontal forces per unit
vertical length. The result is that unwanted inflections
between sharp elevation changes are minimized, at the
expense of localization of the curvature around the data
points.

Although the thin plate equation has been used in the
surface reconstruction problem, one problem manifests itself
more often when using contour line data as opposed to
scattered data. In simplest terms, a common solution to the
thin plate equation at a particular node can be stated as the
weighted average of the node’s neighbors. Consider contour
data depicting hilly or mountainous terrain. Furthermore,
consider a contour line A with a certain elevation, and a
second contour line B, which is at the next higher elevation
(see top of Figure 1b). Typically, contour A will have more
data points than contour B because the horizontal cross
sections of mountains have less area as the elevation increases.
This raises the problem that if one attempts to find the
elevation of some point p, which lies between A and B, then
the number of elevation values whose magnitude is near the
elevation of A is greater than the number of elevation values
whose magnitude is near the elevation of B. Using Equation
2 to compute elevations between two such contours results
in a “terracing” effect; that is, there are more lower elevation
values than higher values, creating a surface whose average
elevation is closer to A than B (bottom of Figure 1b). The
terracing looks more pronounced as the horizontal distance
between successive contour lines increases (assuming the
contours both curve in the same general direction). This
behavior is intuitive, as a thin plate tends to planeness.

An important consideration in DEM production is how
well the resulting surface is hydrologically accurate. Thin
plate methods that generate terraces are poor for hydrologi-
cal studies (Eklundh and Martensson, 1995). Hutchinson
(1988) implemented a method that calculates a roughness
penalty J(f ) composed of two partial differential equations:

(5)

(6)

(7)

Furthermore, the algorithm enforces drainages by elimi-
nating sinks and calculates ridges and streams to facilitate
the thin plate processing and to promote a hydrologically
accurate model. This procedure is implemented in ArcInfo®

as TOPOGRID. Maunder (1999) increased the accuracy of
computed flow lines and also determines pits and peaks in
the contour data, but the method does not use thin plate
splines to compute the DEM.

Additional Thin Plate Methods
A good overview of some of the first uses of minimum
curvature can be found in (Schumaker, 1976). A discussion
of the computational difficulties in interpolating many
isolated points is found in (Powell, 1997), who also presents
an iterative method for up to 105 points.

Enriquez et al. (1983) show that minimizing a thin plate
is an accurate method of interpolation. Gonzalez-Casanova
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(a)

(b)

Figure 1. (a) Profile (dark line) showing Gibbs’ phenom-
ena. (b) Profile (dark line) showing terracing problem in
between contours.
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and Alvarez (1985) presented an improvement to Briggs’
solution (Briggs, 1974 by employing a more mathematically
precise curvature minimization at the expense of run-time
performance. Sandwell (1987) proposed a simpler algorithm,
using Green’s functions instead of bicubic spline interpola-
tion, which makes the method more flexible because slope
measurements can be used instead of elevation data. An
example program using such interpolation is Spherekit
(National Center for Geographic Information and Analysis,
1996), which can handle up to 500 points per section.

Finally, ArcInfo®’s splining (thin plate) method pro-
duces good results in DEM gap fill applications (Doucette
and Beard, 2000); it is not clear if these results reflect the
output from ArcInfo®’s TOPOGRID procedure.

At the same time that research was on-going in the earth
sciences community, similar, relevant work was being done
in the area of machine vision and surface reconstruction; see
Bolle and Vemuri (1991) for a discussion of some of the
various methods. Although many results seem to overlap
those described above, there appears to be no direct link
between the two groups. Grimson (1983) presented a theory
of visual surface interpolation given stereo range data. He
minimized the “quadratic variation” of the surface; this
quadratic variation is exactly the thin plate equation, which
he solved in a similar manner to Briggs.

Terzopoulos (1983a) addressed the efficiency problems
of Grimson’s work by using the multigrid approach to solve
essentially the same biharmonic equation. However, a
smoothness term is added to the quadratic functional,
shown as the � term in Equation 3. This term models
“springs” at the top of observed elevation values, allowing
the thin plate to bend in a more natural way, reducing
Gibbs’ effects in the approximation.

In (Terzopoulos, 1983b; Terzopoulos, 1988), Terzopoulos
gives a three-fold solution to the problems of depth and
orientation discontinuities: In areas where there are no
discontinuities, the problem reverts to the normal thin plate
solution. Where there are depth discontinuities in the surface,
defined as occluding contours, the idea is to “break” the plate
at the discontinuity, resulting in a piecewise continuous
solution. Finally, orientation discontinuities, defined as
surface creases, are handled by adding two continuity control
functions to the thin plate equation that allow the surface to
behave like a flexible membrane at one extreme, and a thin
plate in complete tension at the other. A major problem of
this approach is that the discontinuities must be known
a priori. Terzopoulos handles this by comparing data from
multiple sensors (Bolle and Vemuri, 1991).

Another approach that deals with the discontinuity
problem was given in (Jain et al., 1995; Sinha and Schunck,
1991; Sinha and Schunck, 1992). They use a two-stage
process, where an initial surface based on the observed data
is used to generate regular data using a moving least median
squares regression (MLMS). The final surface is found by
applying an energy functional similar to Equation 3 with an
added weighting term, which is adaptive depending on the
value of the gradient at the point.

Improving Thin Plate Methods
Our approach to improving any of the thin plate methods is
to add additional, accurate elevation points into the initial
contour data set, without the need for operator intervention
(such as adding additional peak elevation data points). This
results in a two-stage method where the contours are
processed first, creating a richer data set. We create additional
data through the use of gradient paths and intermediate
contours. The second stage applies any of the thin plate
methods to yield the final surface.

To compare our results to previous methods, we have
implemented our own thin plate procedures. The “normal”
thin plate method follows Briggs’ equation (Equation 1), does
not add tension or smooth the result, and produces an inter-
polated surface. Output generally resembles that of ArcView©’s
splining function, although our method is more stable in that
it does not produce large spikes in the computed surface that
we have observed in some ArcView© output. We have also
implemented a thin plate approximation which models
“springs” at the data points (Equation 3). A third version
includes a tension parameter, following the equations in
(Smith and Wessel, 1990) (Equation 4). Finally, we compare
our results to those of ArcInfo®’s TOPOGRID (Hutchinson, 1988).

Consider a 257 � 257 raster file containing synthetic
contours, shown in Figure 2a. The thin plate approximation
with springs produces the surface shown in Figure 2b.
Although the surface is generally smooth, one can see easily
the terraces between contours and some Gibbs’ phenomena
at the lowest two contours on the left side of the larger hill.
The use of tension, while helping to resolve the terracing
problem, may produce radical changes in slope at contour
lines and may flatten large areas, creating a scalloping effect
between some contours and completely obliterating the
rounded tops of hills. Some of these effects can be seen in
Figure 2c.

Gradient Paths
Intuitively, a better surface should be produced when given
more data. One method, inspired by the concept of lofting in
computer-aided design (Faux and Pratt, 1981), computes
gradient paths from local minima to maxima, which inter-
sect known contours perpendicularly. A similar idea is
described in (Douglas, 1983), although the computation
method is different. The gradient paths represent fall lines
down the side of a hill. A fall line is the steepest route
down a slope, or the path that a ball would take when
descending from a particular point.

The gradient paths are formed by first computing an
initial surface from which to calculate gradients; in our case,
we employ the normal thin plate interpolation. Approximate
gradients are computed for each point on the grid from
which the aspect is found easily (Skidmore, 1989). Using
finite differences, the x component of the gradient is:

(8)

where each zi,j represents an elevation at grid location (i, j)
(Gousie and Franklin, 1998); the y component is similar. A 2D
path is formed from one grid location to another by following
the direction of the gradient. Since the computations occur on
a grid, the direction is rounded (within some threshold) to one
of the eight cardinal directions, or one of the eight neighbors
of an elevation point. If the direction cannot be rounded or
the initial surface is horizontal at that location, then the grid
point is not eligible to become part of a gradient path.

True elevations along a path are known only where it
crosses contours. The unknown elevations are found by
piecewise linear interpolation. An interpolating piecewise
Catmull-Rom cubic spline (Catmull and Rom, 1974; Farin,
1990), which has C1 continuity, is fitted to each path, using
the true elevations at contour crossings as control points. As
shown in Figure 3, this spline passes through each control
point pi in the direction parallel to the chord that runs
through adjacent points pi � 1 and pi � 1. Since the control
points are always situated on contours, the spline follows
the slope trend of the previous and succeeding contours.
Taking P(u) as the representation for the parametric cubic

� zi�1,j�1 � 4zi�1,j � 4zi�1,j)

1
2

 (zi�2,j � zi�2,j � zi�1,j�1 � zi�1,j�1 � zi�1,j�1
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The algorithm for finding all of the gradient paths in a
grid of contours is as follows: (a) Compute initial thin plate
surface., (b) Compute gradient at each grid point., (c) For
each point Pi,j on the grid not visited create empty path.,
(d) Repeat., (e) Mark Pi,j as visited., (f) Add Pi,j to path., (g) If
Pi,j contains a valid gradient direction move to neighboring
point Pk,l following gradient direction until there is no valid
neighbor., (h) Apply Catmull-Rom spline to path, using
contour elevations as knots., and (i) Copy new computed
elevations from path back to grid.

Most of the surface will be covered by these paths,
leaving some small gaps where the gradients were not found
or did not follow one of the eight cardinal directions. A
portion of the gradient paths computed from the synthetic
data can be seen in Figure 4a. The procedure would con-
tinue calculating more gradient paths at each point in the
grid not previously processed. The result is a set of paths
from local minima to maxima forming a rough surface
through the contours. Because there is no provision for
smoothing the surface between separate splines, or in areas
not covered by splines (e.g., within closed contours), the
second stage is to smooth the surface using the thin plate
approximation, as shown in Figure 4b.

Intermediate Contours
A property of contour lines is that, in general, successive
lines run approximately parallel to one another. By finding
data points in successive contour lines that are closest to
one another, we can find a midpoint between the two
contours. Repeating this process for all points along one
contour will create a new intermediate contour, which is
located between the two existing contour lines. Furthermore,
the elevation of the intermediate contour is exactly midway
between the elevations of the original contours on either
side. This can be assumed because the slope usually does
not differ much from one contour to the next. The inter-
mediate contours give a good approximation of the data
between observed values. This is especially helpful in areas
where contours are spaced far apart. By incorporating the
intermediate contours in a thin plate approximation or
interpolation, the terracing problem is much reduced. An
additional benefit of creating such contours is that conver-
gence of the thin plate algorithm may occur sooner, thus
reducing total computation time. Finally, the additional
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(b)

Figure 2. (a) A synthetic contour map. (b) Thin plate
surface approximation with � � 0.5. (c) Thin plate under
tension surface interpolation.

point function for the curve section between the knots pi
and pi�1, the polynomial form of the spline is defined by
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Figure 3. Catmull-Rom spline through contour elevations
P. The straight line segments indicate the direction of
the chord that connects adjacent points.
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contours are not considered to be original data, and thus are
allowed to deviate from their computed elevations in later
processing stages to yield a smooth surface.

Figure 5a depicts two contours, which form a hill in the
shape of a bean. This kind of shape is troublesome to mini-
mum curvature methods because of the large areas devoid of
contours at each end. Intermediate contours can help signifi-
cantly because elevation values are found in the areas where
there were no data points whatsoever, as shown in Figure 5b.

Computing an intermediate contour is done through the
following steps:

For all points P on contour lines: (a) Choose a point P1
from one contour line A., (b) Find the closest point P2
on contour line B s.t. Belevation � Aelevation., (c) Determine
the midpoint Pmid between P1 and P2., and (d) Calculate

elevation: .

The condition shown in Step (b) assures that a new
contour will have an elevation whose value is between the
heights of its neighbors. Furthermore, this condition pre-
vents the formation of a peak in a saddle area; such areas
are computed in a later stage in the algorithm. Repeating the
process whereby Step (b) finds the closest point such that
Belevation 	 Aelevation results in fewer gaps in the intermediate
contours. Bresenham’s circle algorithm (Foley et al., 1990),

Pmid
elevation} �

1
2

 (P1
elevation � P2

elevation)

which determines the points that best fit a circle with a
given radius on a discrete grid, is employed to find the
closest point P2 from P1. From P1, circles with successively
larger radii are generated until the circle contacts a point
P2, which has an elevation value higher or lower than P1’s.
The circular search is then terminated and the midpoint of
the line that connects P1 and P2 is computed, rounded to the
nearest grid position. The new elevation midway between
the elevations of P1 and P2 is then stored at that location.

The algorithm can be repeated to compute as many
intermediate contours as desired. Newly-computed inter-
mediate contour lines are included as data in successive
iterations. Note that although this method is not optimal
(see some gaps in the intermediate contours in Figure 5b),
two iterations of the algorithm are sufficient to reduce
terracing effects in all of our tests. More iterations may be
necessary if contours are very widely spaced. Another
method to compute intermediate contours is to create the
skeleton of the contours as shown by Gold (1999). Such a
skeleton may create artificial peaks, such as in saddle areas,
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Figure 4. (a) Synthetic data with gradient paths. (b) Thin
plate surface approximation using gradient paths.

(a)

(b)

(a)

(b)

Figure 5. (a) A “bean” contour file. (b) Bean
with additional intermediate contour.
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because no conditions on the elevations of contours are
considered.

Using the synthetic data from Figure 2a, two iterations of
the intermediate contour method produces contours as shown
in Figure 6a. The thin plate approximation is applied to fill
areas not yet computed and to promote a smooth surface.
Figure 6b shows the surface computed from the contours.
Because the computed intermediate contours introduce new
elevation values into the initial data set, the resulting surface
has fewer artifacts than a thin plate approximation alone.

Evaluation criteria
The two new algorithms were tested using data gathered
from USGS sources. Our methods are compared to surfaces
created with the thin plate with springs, the thin plate with
tension, and the TOPOGRID procedure. Furthermore, since we
wish to compare surfaces created with different methods
using the same contour data, we assume the elevation data
is reliable and concentrate on comparisons of the surfaces
created from that data.

The criteria used to assess the quality of a computed
DEM are as follows:

1. In general, the surface should look reasonably realistic with
minimal artifacts. A shaded relief map is the conventional
way to assess the surface (Wood and Fisher, 1993). Although

this is a qualitative measure, it is very useful and may show
artifacts that are not discovered easily through quantitative
tests.

2. The total squared curvature must be as low as possible.
Although natural surfaces exhibit some curvature, artifacts
such as the aforementioned Gibbs’ phenomena contribute
greatly to the total curvature. For N � n2 total points, this is
found by comparing each computed elevation value to its
four neighbors (Briggs, 1974):

(10)

where each u represents the elevation at the grid location
indexed by i and j. The lower the squared curvature, the
smoother the surface. This is useful for direct comparisons of
results from different algorithms working on the same data.

3. The average absolute curvature must be as low as possible
as well. Because small local imperfections may bias the total
squared curvature, an average absolute curvature of the
surface is computed:

(11)

4. DEM elevations falling on the original contour lines must
have values equal to (interpolation) or almost equal to
(approximation) the contour labels (Carrara et al, 1997). This
is measured by the root mean square error (RMSE) of the
surface (Rinehart and Coleman, 1988):

(12)

where ui is the interpolated DEM elevation of test point i and
wi is the true elevation of test point i. Because most of the
surfaces are the result of an approximation rather than a true
interpolation, the RMSE refers to the error of the surface
compared to the original contour map. Following (Carrara
et al., 1997), an acceptable difference between a computed
point and the contour elevation is five percent of the con-
tour interval. An RMSE of zero indicates a true interpolated
surface.
The remaining tests are similar to those described in (Carrara
et al., 1997). Additional methods for checking DEM accuracy,
such as creating aspect maps for checking slope directions
and using Laplacian filtering for edge detection, are found in
(Wood and Fisher, 1993).

5. In an area bounded by a contour pair, the DEM elevations must
fall within the elevations of the two contours. This can be
done in a variety of ways, but one method to check for this
criterion is to plot a profile of the surface in question. Although
it shows only the elevations in one area, it is a reasonable test
because thin plate methods find the minimum curvature sur-
face globally, and thus one well-chosen profile will give a
reasonable indication of the surface morphology between
contours. It is also easy for the researcher to find patterns or
artifacts in the surface quickly.

6. Within an area bounded by a contour pair, the DEM eleva-
tions should vary almost linearly. Although this is not true
in all cases, in general a linear fit between contours
indicates a constant slope and thus the absence of terracing
artifacts.

A method to determine this measure, also used by
Reichenbach et al. (1993), is to group DEM elevations into
integer intervals between two contours. These elevations are
then reclassified into relative elevations. For example, if a
contour pair were 100–120, then the relative elevations, or
height classes, would be 0, 1, 2, . . . , 19 corresponding to
the actual elevations of 100, 101, 102, . . . , 119. The height
classes are computed for each elevation pair and then dis-
played as a histogram. A flat histogram indicates a smooth
surface and a good linearity between the contours, while other
patterns show various artifacts resulting from the particular
interpolation or approximation method.

RMSE � (
1
Na (ui � wi)

2)1/2

� ui,j�1 � ui,j�1 � 4 ui,j) 0  

Cave �
1

(n � 2)2 aa  0  (ui�1,j � ui�1,j

Csq � aa (ui�1,j � ui�1,j � ui,j�1 � ui,j�1 � 4 ui,j)
2
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(a)

(b)

Figure 6. (a) Synthetic data with two iterations of
intermediate contours. (b) Surface approximation using
intermediate contours.
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Results
The test case is shown in Figure 7a, taken from a USGS DLG
of Crater Lake, Oregon. The contours were rasterized into a
900 � 900 grid. Elevations are given in feet and the grid
spacing is in meters; the contour interval is 40 feet. As is
evident in the contours, the Crater Lake data has both steep

sections (rising from the lake in the lower left) and flatter
sections, yielding a good test for reconstruction techniques.

Figure 7c shows the shaded relief map of our imple-
mentation of the thin plate with springs approximation.
Without additional processing, this method yields terraces
in the flatter sections because of the distance between
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(a) (b) (c)

(d) (e)

(g)

Figure 7. (a) 900 � 900 contours from a DLG of Crater Lake, OR. (b) Two iterations of intermediate contours (c)
Shaded relief of DEM obtained from thin plate approximation. (d) DEM obtained from thin plate under tension
interpolation. (e) DEM obtained from ArcInfo’s TOPOGRID procedure. (f) DEM obtained from gradient paths proce-
dure. (g) DEM obtained from intermediate contours and thin plate approximation.

(f)
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contours, although the surface is visually acceptable in the
steeper portions. Figure 7d shows the thin plate surface
under tension. Between contours, the surface is quite
smooth, but the addition of the tension parameter is not
sufficient to eliminate the terracing problem. Furthermore,
because this is a true interpolation, the original contour
lines are clearly visible, even in the steeper sections. Figure
7e shows the surface produced by the TOPOGRID function, as
implemented in ArcInfo®. As with the previous method, the
contour lines are clearly visible due to true interpolation,
but the overall effect is much better. Note, however, several
small dimples in the middle and south-east areas, as well as
some ripples in the lower left corner, an area that represents
the lake.

Figure 7f shows the gradient paths surface. The terrac-
ing is virtually eliminated, but there are small artifacts
visible, yielding a slightly bumpy surface. These artifacts are
the result of the failure of gradient paths to be produced in
those areas because of the deficiencies of the initial thin
plate surface used to generate gradients. The use of interme-
diate contours (Figures 7b and 7g) also improves the flatter
areas, although terracing remains a problem and there are
additional small artifacts. The locations of these artifacts are
similar to the gradient paths surface, implying that neither
pre-processing method improved a deficiency in the thin
plate processing. Note that the TOPOGRID procedure success-
fully removed these spurious pits and peaks.

The results of the quantitative tests two through four are
shown in Table 1. The thin plate with springs approxima-
tion yields a total squared curvature of 72,678, which
indicates a globally smooth surface in relation to the other
surfaces. The average curvature is among the highest, how-
ever, suggesting that there must be large areas of high cur-
vature, which may be evidence of Gibbs’ phenomena. The
RMSE of 1.29 is 3.2 percent of the contour interval, which
falls within the standard of five per cent used by Carrara
et al. (1997). Adding tension to the thin plate creates a true
interpolation (RMSE � 0), but at the cost of overall curvature.
The TOPOGRID surface yields an RMSE of 3.62, which trans-
lates to 9.1 percent of the contour interval, significantly
higher than the threshold of 5 percent. Although this is a
interpolation method, the algorithm can change data points
in order to enforce drainages and ridge lines, allowing for a
non-zero RMSE. Visually, the gradient paths method pro-
duced a less-terraced surface, but with a few artifacts. This
is borne out by the higher (than the thin plate approxima-
tion) total squared curvature, but the lower average curva-
ture indicates that there are fewer large deviations. The
statistics for the intermediate contours method are quite
similar.

Criterion five indicates that elevations should always
fall in between the heights of contour pairs. Plots of a
diagonal (SW-NE) profile for all five methods on the Crater
Lake data are shown in Figure 8a–e. In all cases, the
vertical lines indicate the heights of contours. Clearly, the
thin plate approximation suffers not only from terracing,

but also from Gibbs’ phenomena, as the surface dips above
and below the given contours. The thin plate under tension
eliminates the Gibbs’ phenomena, but the terracing is still
in evidence. The TOPOGRID and the new methods follow the
contours much better, but note that the lake is not quite
flat.

Finally, to evaluate Criteria 6, plots were made of the
relative heights of the DEMs of Crater Lake produced by each
of the procedures (Figure 9a–e). The frequency of the first
height class for thin plate approximation is actually 235479;
similarly, the frequency of the first height class for the thin
plate under tension is 320682. Both of these indicate that
the surfaces change rapidly, right at the contour lines. The
overall pattern of the graphs shows the terracing effect.
In Figures 9d and 9e, the frequency of the first height class
is drastically reduced, but in both cases, there is still an
artificially introduced pattern, probably indicating the
presence of terracing but at a smaller scale. The TOPOGRID
procedure shows a very regular pattern. The three elevated
bars in the intermediate contours method plot clearly show
problems arising from the two iterations of the algorithm,
which would produce three new contours: the first (at x �
20) in the middle of the original contours (at 0 and 39) and
the next two from inserting a new contour in between 0 and
20 and again between 20 and 39. The artifacts near these
latter contours are shown as the elevated bars at 10 and 30,
respectively.

Conclusions
The thin plate interpolation, approximation, or the addition
of tension may compute smooth DEMs from contour input, but
often Gibbs’ phenomena and especially terracing effects are
visible. The problem worsens as contour spacing increases,
and is readily apparent in shaded relief maps. Automatically
adding additional data in a pre-processing step through either
gradient paths or intermediate contours visually improve the
surface created by subsequent thin plate processing, com-
pared to thin plate methods alone. In all cases, the new
methods produce smooth surfaces as shown by the total
squared curvature and average curvature, while still being
faithful to the original contour data, as measured by the RMSE.
The profiles and height class plots show that the new
methods create better surfaces in between contours than
previous thin plate procedures alone. The surfaces compare
favorably to ArcInfo®’s TOPOGRID procedure, the latter of
which exhibited a much higher RMSE. Furthermore, no special
operator input, such as break lines or peaks, is needed for the
new methods.

In general, the gradient paths procedure produces
slightly better results than the intermediate contours method.
The advantage of gradient paths is that data is interpolated
across contours, allowing elevations to flow smoothly
between known and unknown areas. The downside is that a
surface approximation is needed in order to compute the
gradients. Thin plate approximations are poor in areas
bounded by increasingly larger contours (shown in Figures 1b
and 5a) resulting in terracing. Such a surface may not
provide a good base from which to compute gradients. In
these cases, the intermediate contours method may be more
appropriate.

Although the final DEMs created using the new meth-
ods are shown to be better generally than previous thin
plate results, there is still room for improvement. Small
artifacts may be seen in some of the computed surfaces,
especially in flatter areas approximated by the gradient
paths method.

It may be possible to combine the methods to alleviate
such problems; for example, one may create a good surface

TABLE 1. RESULTS OF APPLYING METHODS TO CRATER LAKE DATA

Percent of 
Method Csq Cave RMSE Contour Interval

Thin plate approximation 72678 0.138 1.29 3.2
Thin plate under tension 

interpolation 741850 0.139 0.00 0.0
TOPOGRID 128100 0.144 3.62 9.1
Gradient paths 92800 0.117 1.29 3.2
Intermediate contours 92788 0.118 1.93 4.8
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approximation using intermediate contours, compute
gradients, and then follow the gradient paths procedure.
This combination, and others, is fodder for future work, as

are improvements in the methods to eliminate small 
gaps that are not well handled by the stage 2 thin plate
procedures.

Figure 8. (a) Thin plate approximation. (b) Thin plate under tension. (c) TOPOGRID. (d) Thin plate
with gradient paths. (e) Thin plate with intermediate contours.
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Figure 9. (a) Thin plate approximation. (b) Thin plate under tension. (c) TOPOGRID. (d) Thin
plate with gradient paths. (e) Thin plate with intermediate contours.
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