$\frac{\Omega \quad \text{COMP 401}}{M-W} \quad \frac{\text{Senior Seminar}}{Seminar/Lecture - 12:30-1:50}$

Who:	Michael Gousie		
Where:	Science Center 1325		
When:	Mon, Wed 3:30-4:30; Tue 11:00-12:30; Fri 10:30-11:30		
	and by appointment		
E-mail:	mgousie(at)wheatoncollege(dot)edu		
Web:	http://cs.wheatoncollege.edu/mgousie		

Recommended Texts:

Patrick J. Lynch and Sarah Horton. Web Style Guide, 4th Ed., Yale University Press, 2016. [Online]

Course References:

We will look at excerpts from the following sources:

Tsui and Orlando, *Essentials of Software Engineering* (Jones and Bartlett, 2007). Tufte, *The Cognitive Style of PowerPoint* (Graphics Press, 2003). [In library] Doumont, *The Cognitive Style of PowerPoint: Slides Are Not All Evil*. In Technical Communication, vol 52, no 1, 2005. [In library]

Various software engineering texts/web sites and scientific journal/conference articles.

Course Content

Seminar \Sem'i*nar"\, n. [G. See Seminary, n.]

A group of students engaged, under the guidance of an instructor, in original research in a particular line of study, and in the exposition of the results by theses, lectures, etc.; – formerly called also seminary, now seldom used in this sense.

Much of this course will follow the definition of a seminar, under the general topic of image/topographic processing and the use of different data formats. You will work on a research project as part of a team. The project involves manipulating and displaying image data in a comprehensive system. The project will be defined by an outside "client," who will visit the class and describe the problem to be solved. Your team will work with the client on the details of the system and create a prototype. You will then "pitch" your prototype to the client. After gathering responses to your ideas, your team will investigate and practice some software engineering principles, consider various image/topographical problems, and discuss some relevant research papers.

Grading:

There will be various types of assignments in this course; four of these will be programming projects. The first will be an OOP project to refresh your C++ skills. The course will then switch to Python because of the availability of suitable libraries/APIs for our research problem. You will write three Python applications dealing with image/topographical problems, the last of which being the large team project. As part of the project, the group will write multiple versions of a Detailed Functional Specification (DFS). The group will do a formal presentation of its final project in front of the client and the general public. Each student is

also responsible for two individual in-class presentations. In the first of these, you will discuss a particular problem in the topographic/GIS (Geographic Information Science) field, and in the second you will disseminate the complexities of a research paper. You are expected to contribute to all in-class discussions and to complete additional in-class and out-of-class assignments. The breakdown of points follows; note that there are times when assignments overlap.

What	Weight	Due Date (Subject to change)
Sem 1 (pair)	5%	February 8
Sem 2 (individual)		February 19
Detailed Functional Specification (DFS) v1.0 (group)		February 22
Project proposal presentation with client (group)		March 1
DFS v2.0 (group)	5%	March 8
Sem 3 (individual)		March 9
Lightning talk (individual)		March 29
Project mock up/prototype with client (group)		April 3
Research paper presentation (individual)		April 10/12
Working portions of project (group)		April 19
Final project (Sem 4) presentation with client (group)	40%	May 3

Grades will be assigned according to the following scale:

Course Policies:

- You are responsible for all material covered in class.
- You are responsible for all reading assignments as assigned/handed out in class.
- The projects will be implemented using various Python libraries and APIs. You may use any platform for development. All code must be standard Python 3 and work on any OS.
- All reports and papers must be word processed or formatted using LATEX, as well as checked for spelling and grammar.
- Individual grades on group projects will be decided by team members splitting the total points received as they see fit (up to a high of 100 each).
- Assignment due dates are FIRM.
 - All programming projects must be submitted electronically by 11:59:59 PM on the due date unless otherwise noted. Projects submitted on the following day will receive a 15% penalty. Anything turned in later will receive a 0. Hard copy, if required, must be submitted at the beginning of the next class, or as instructed on the specification sheet.
 - Written homeworks/papers must be submitted at the beginning of class on the due date. There is no provision for late homework.
- You are expected to adhere to the Honor Code.

- Although *discussion* of assignments is encouraged, the *implementation* of programs is to be the
 result of your, or your group's, own work. Any copying of programs or portions of programs
 that is not fully documented and discussed as such will result in a 0 for that assignment or failure
 of the course.
- Written homework/papers should absolutely be your own work. Copying of homeworks will result in a 0 for the homework portion of the grade or failure of the course.
- You will be required to write and **sign** the Honor Code pledge on all work turned in: *I have abided by the Wheaton Honor Code in this work.*
- The use of a laptop or other computer/pad is not allowed during lecture or discussion, unless the day's lesson requires it. Special arrangements can be made if necessary.
- The use of cell phones, iPods, iPads, iPhones, iPlops, iFlops, and other personal electronic devices is prohibited during class.
- Please, no eating during class.
- Please do not disrupt class by leaving/returning, unless there is a **real** emergency.
- Accommodations for disabilities:

Wheaton is committed to ensuring equitable access to programs and services and to prohibit discrimination in the recruitment, admission, and education of students with disabilities. Individuals with disabilities requiring accommodations or information on accessibility should contact Jerimiah Bergstrom, Director of Accessibility Services, at the Filene Center for Academic Advising and Career Services.

 \sim accessibility@wheatoncollege.edu or (508) 286-8215 \sim

Detailed Course Schedule (Subject to change):

Wk #	Date	Topic(s)	Reading	Due
	Jan			
1	25	Introduction; what are we doing?		
		C++ and OOP		
2	30	More OOP, résumé workshop		Résumé, cover letter
	Feb	, I		
	1	Python GUIs	Web links	
3	6	Initial client meeting	Open mind	
	8	More Python GUIs; file formats	Web links	Sem 1
4	13	Software engineering I: Agile vs.	Web Style Guide, handouts	
		vs. Waterfall; DFS		
	15	Topographic processing	Notes, online resources	
5	19			Sem 2
	20	More topographic processing	Notes, online resources	
	22	Project discussion; GitHub		Ideas, DFS v1.0
6	27	The power of PowerPoint?		
		Tufte does rocket science	The Cognitive Style of PowerPoint	
		Doumont rebuttal	Slides Are Not All Evil	
	Mar			
	1	Client project proposal presentation		Pitch & prototype,
				DFS v1.1
7	6	Project discussion		DFS v1.2
	8	TBD		DFS v2.0
	9			Sem 3
8	13	SPRING BREAK	Islands Guidebook	Corona bottle
	15	STILL SPRING BREAK		
9	20	How to read a research paper I	CompSurf: An Environment for ,	
	22	How to conduct research	Online resources	
10	27	How to read a research paper II	Visualization of DEM Error,	Lightning topic
			Augmenting Grid-Based Contours	
	29	Lightning talks		
	Apr			
11	3	Client project progress meeting		Running prototype
	5	Software engineering II		Copy of article
12	10	Paper presentations	Your choice	Short presentation
	12	More presentations	Your choice	Short presentation
13	17	TBD		
	19	Project progress meeting		Another sprint
14	24	Career preparation		
	26	TBD		
	May			
15	1	Project finalization		
	3	Final presentation for client		Sem 4