
Why do Software Teams Deviate from Scrum?
Reasons and Implications

Mohamad Mortada
mortada@student.chalmers.se

Chalmers | University of Gothenburg

Gothenburg, Sweden

Hamdy Michael Ayas
ayas@chalmers.se

CSE Department

Chalmers | University of Gothenburg

Gothenburg, Sweden

Regina Hebig
hebig@chalmers.se

CSE Department

Chalmers | University of Gothenburg

Gothenburg, Sweden

ABSTRACT

Human, social, organizational, and technical aspects are intertwined

with each other in software teams during the software development

process. Practices that teams actually adopt often deviate from those

of the used frameworks, such as Scrum. However, currently there is

little empirical insight explaining typical deviations, including their

reasons and consequences. In this paper we use observations to

investigate selected activities of the software development process

in two companies that use Scrum. We study identified deviations

to understand their reasons and consequences, using a survey and

interviews. We identify 13 deviations and we categorize reasons

based on type. The deviations’ consequences are investigated in

terms of their impact. Most deviations can be found in multiple

teams. Reasons are doubts of the teams, organizational structures

and complexity of the work. Consequences of deviations affect

product development and team work.

CCS CONCEPTS

• Software and its engineering → Agile software develop-

ment.

KEYWORDS

Agile, Scrum, Process Deviations

ACM Reference Format:

Mohamad Mortada, Hamdy Michael Ayas, and Regina Hebig. 2020. Why

do Software Teams Deviate from Scrum? Reasons and Implications. In

International Conference on Software and Systems Process (ICSSP ’20), October

10–11, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3379177.3388899

1 INTRODUCTION

Besides the often-complicated technology, software development

is comprising of social contexts, environments, people that are an

integral part of these environments and also organizational struc-

tures and processes [1]. Scrum is one of the most commonly used

software processes today [11]. However, research indicates that

some development teams deviate from processes [11]. Furthermore,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSSP ’20, October 10–11, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7512-2/20/10. . . $15.00
https://doi.org/10.1145/3379177.3388899

there is evidence for various struggles in software organizations

on the adoption of process models and frameworks [6, 19]. Thus,

models of software development processes might not always be

adopted by the guide.

Today, little is known about the character and reasons for the

occurrence of software process deviations. Some research indicates

that developers tend to practice activities in the ways that they

are comfortable with or closer to their experience, but far from

best practice [13]. Therefore, the people responsible for the process

might need to change some events or steps during the process

execution.

However, even though such actions are common in software

processes [10], deviating from guidelines in critical processes might

have sub-optimal consequences and implications on the outcome

of software projects [20]. The development of an understanding is

important, because without a clear indication on the implications,

it is not possible to know how effective a process is for a team

[10]. Furthermore, without knowing the reasons that lead to a

deviation we cannot improve the process [10]. However, there

is only few empirical research on the deviations from software

development processes. Consequently, there is a lack of knowledge

about potential implications of deviations and reasons for their

existence.

In this paper, we address the following research questions on

the example of the Scrum framework:

• RQ1: What are typical deviations from the Scrum frame-

work?

• RQ2:What are the reasons for the occurrence of the identi-

fied deviations?

• RQ3:What are the implications of the identified deviations?

We observed two software development teams and identified

deviations by comparing on activities that the teams performed

against those specified by Scrum (the targeted software develop-

ment process in both cases). We further use interviews and an

online survey in order to capture reasons and implications of the

identified deviations, as well as to gain a first understanding of

generalizability of the observations. Our findings help to better

understand why software engineers deviate from the process. We

further aggregate the results to provide an overview over groups

of possible reasons for deviations as well as implications.

We discuss related work in Section 2. In Section 3 we present our

methodology. Results are shown in Section 4. Section 5 answers our

research questions and discusses the results. Finally, we conclude

in Section 6.

71

2020 IEEE/ACM International Conference on Software and System Processes (ICSSP)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3379177.3388899&domain=pdf&date_stamp=2020-09-16

2 RELATEDWORK

In this section, literature and related work about the main concepts

of the paper are presented. Specifically, we start by describing Soft-

ware Systems Processes and their challenges in actually adopting

them. Then we illustrate how these challenges lead to the modifica-

tions of processes with Hybrid Processes and Process Tailoring in

the attempt to improve the performance of teams.

2.1 Agile Processes and Challenges

The agile manifesto is comprised of a set of fundamentally human-

centered values that have lead to the renowned agile methodologies

in software development. A large number of practices, frameworks

and process models have been developed, that enable the adoption

of such methodologies [7]. The four basic values of the manifesto

along with the twelve supporting principles facilitate strong focus

on customer collaboration, frequent delivery, and iterative or in-

cremental development through fast and light life cycles [2]. The

basic values of Agile along with the supporting principles have

set the foundations for process models and frameworks that claim

promises for successful software development, such as Scrum and

eXtreme Programming (XP) [12].

Software development teams in organisations try to adopt pro-

cess models and frameworks like Scrum, that are based on the agile

manifesto. The most important activities of Scrum according to

Kniberg (2015) as well as the Scrum guide of Schwaber and Suther-

land (2013) is the facilitation of systematic evaluation of the work

done (Daily Scrum), the transparent planning of the future (Sprint

Planning), the validation of the resulted products (Sprint Demon-

strations) and the continuous reflection on key learning points from

gained experiences (Retrospectives) [12, 18]. Some guidelines for

Scrum are that:

• All team members contribute in the time-boxed (15 minutes)

Daily Scrum and developers have to answer three main key

questions.

• Tracking the status of sprints using burn-down charts from

the backlog that should be ready before every sprint plan-

ning.

• Developers in the team decide the amount of stories to in-

clude in each sprint by answering (1) What can be delivered

in the increment resulting from the upcoming sprint, and

(2) How the work needed to deliver the increment will be

achieved.

• Breaking down traceable stories when is needed, in order to

help during story estimation, task distribution and alignment

of team members.

• Present in each sprint a demo of the finished work to stake-

holders, customers or other dependent teams.

From the very early days of Agile, many challenges were ap-

parent in implementing process models and frameworks [17]. The

principles and guidelines give clear directions in Software Develop-

ment towards collaborative and human-centered software develop-

ment, minimization of unnecessary work, customer involvement

and acceptance of uncertainty [7]. These directions however lead to

practices that appear good in general but are not based on substan-

tial evidence for their benefits. They are rather based on individual

cases that indicate how things should take place and do not nec-

essarily represent how software development teams apply these

directions [17].

2.2 Deviations from Agile Software and

Systems Development Processes

Studies that investigated software organizations while applying

process models have reported multiple struggles in adopting them

[19]. Issues in process conformance are critical in applying success-

fully frameworks, process models and process tools [13]. According

to Da Silva et al. (2011), one difficulty is due to the assumption

that the process agents (companies, teams etc.) will strictly follow

the adopted process model, without making any modification to

perform the process differently from the specification, which is

not realistic [6]. In fact, there is evidence on how the adoption of

agile processes is influenced by many factors, such as the culture

in the organization [14]. Additionally, another assumption is that

the chosen process model captures the correct steps, stages, and

roles required to achieve the company’s goals [6].

However, it is not always the case that a process model is abso-

lutely correct, since every team has its own situational factors and

unique characteristics which enable high performance [4]. Just like

any type of teams, the quality of teamwork in agile is perceived as

influential for the learning and work of team members [16]. Char-

acteristics of agile teams can have positive impact like perceiving

positively events such as daily stand-up meetings due to opportu-

nities for sharing information, addressing problems and discussing

solutions [7]. On the other hand, teams that report their status to

managers and that perceive the frequency of the meetings to be

too high and the duration too long, tend to perceive negatively the

practices and consequently, perform them poorly [20]. Therefore,

approaching the adoption of a process with flexibility during its

enactment can be beneficial to avoid some negative consequences

and find a better fit [6].

In practice, it is noticed that many companies in industry are

combining different processes in order to increase the suitability

between process and team [8, 11]. Such tendencies is what leads

to the development of approaches that emphasize on the evolution

of processes and their dynamic adaptation in ways that tolerate

deviations [9]. Decomposing processes into the elements of process

definition, process performance and process enactment can indicate

the effects of deviations on adopting a process model and help for

a more focused monitoring [3]. Furthermore, the importance of

improving the software process became evident and a crucial step

for improving is to evaluate and measure a process [8, 21]. Even

though it is clear that the activities that teams actually perform

deviate from the activities suggested from process models and

frameworks, there is limited evidence that illustrate how exactly

the enactment of processes is different, what are the reasons of the

differences and what are the implications of deviating in certain

activities [10, 20]. Hence, this gap needs to be addressed with clear

answers on how specific activities affect team performance, for

example in terms of coordination, communication, activities and

achievement of goals [8, 20].

72

• Detailed protocols
about Scrum events1. Observations • List of identified

deviations
2. Comparison

to Scrum
Guidelines

• Frequency of
deviations

3. Online
Survey

• Consequences of
deviations

• Causes of deviations
4. Interviews2 teams in different

companies
19 deviations initially

identified

34 respondents;
13 deviations reported in >33%

6 participants

Figure 1: Overview of the Research Methodology

3 RESEARCH METHODOLOGY

We decided to use a case study approach, as boundaries of this

subject, e.g. how possible deviations and their implications can look

like in practice, was not clear at the beginning of the study. Hence,

we conducted a multiple case study and investigated the cases of

four Scrum activities in two teams (A and B) at different companies

in Sweden, consisting of together 14 people. Team A consisted of

five people: one agile coach and four developers. An important note

is that the product owner (PO) was one of the four developers in the

team. At the second company, team B was composed of nine people

located in Sweden: one scrum master, one PO, one developer from

Sweden, and 6 other developers from India. As shown in Figure

1, several methods were used to gather data from the teams and

to evaluate the findings. This resulted to the identification of 19

deviations initially and their filtering to 13 after evaluating them

with a survey.

3.1 Observations & Comparison to Scrum

Guidelines

Our main motivation for using observation was the assumption

that developers would not necessarily be able to recall and report

on subtle deviations from the standard that became the normwithin

their teams. Using observations, we could record these deviations

and use that information later to make developers aware about

them during the interviews. Furthermore, observations offered the

advantage that we could do the first round of data collectionwithout

requiring additional resources such as time from the teams.

As we were not allowed to use audio or video-records, we de-

veloped data-sheet templates specifically to protocol the different

events. Tables 1, 2, and 3 illustrate the structure of these data-sheets

for daily scrum, sprint planning, and retrospective. These sheets

were prepared based on agile guides of Kniberg [12] and Schwaber

and Sutherland [18].

Team A was observed for four consecutive days. The daily scrum

in team B was observed for an entire working week every day at

their usual working time (09:30 am). All developers of the teams

were working from the same location and the sprints observed

were representative to the typical sprints of the teams (e.g. they

were not Innovation Sprints). Furthermore, the two teams were

observed while doing their demonstration, sprint planning, and

retrospective. The observation was performed as non-intrusive as

Table 1: Daily Scrum observation template

Time for

each

Total Time Contribution Late

comers

To calculate

the average

contribution

for each

developer

To calculate

the average

time for

daily stand

up

To make

sure if all

developers

contribute

To make

sure that all

developers

attend and

there are no

late comers

Sprint

backlog

Awareness

of owned

tasks

Awareness

of sprint

status

Notes

How the

team update

their sprint

backlog?

To inspect if

each

developer

has a task to

do

Does the

team trace

their sprint

to achieve

the sprint

goal?

Add more

notes if any

exist

possible. To reach that, only one of the researchers was present at

the observed events. Furthermore, as observer we never interrupted,

asked questions, or provided any opinions to the teams during

observation. The data was directly written into the data-sheet for

each agile event. The observation stage took in total three weeks

to be finished.

After the observations, we compared the sheets to the Scrum

guidelines by Kniberg [12] and Schwaber and Sutherland [18], in

order to identify deviations. All 19 identified deviations were docu-

mented for the next steps.

3.2 Online Survey

To further identify which of the observed 19 deviations are likely

to be generalizable and typical for Scrum, we performed an online

survey.

The questions were formulated based on the identified deviations.

All questions were kept short and easy to read. Many of them were

formulated as statements that participants could agree/disagree

with. For example, “We make sure that each member in the team

73

Table 2: Sprint Planning observation template

Total Time Is Product

backlog already

prepared?

Agenda

How long does the

Sprint Planning

meeting take?

How does the

team create a

sprint task board?

Do they have it

prepared before

planing?

Did the

responsible of the

meeting (Scrum

Master) prepare

for the meeting?

Presence of

Product Owner

Define Sprint

Length

Define Sprint

Goal

How does the

team pick up their

stories for the next

sprint and how do

they get story

specification?

How the team

defines their

sprints?

To see if the team

is aware of what is

prioritized for the

next sprint

Table 3: Retrospective observation template

Total Time Used

Method

Used

Questions

Notes

How long

does the

team

retrospective

meeting

take?

How does

the team

decides the

important

topics to

discuss

further?

What

questions

does the

team

retrospective

answers?

For more

notes if

available

contributes andwe give him the turn to speak. (Yes/No)”. The survey

was divided into five parts:

• Background questions concerning the participant, such as

years of experience in agile practices and their role in their

teams,

• Daily Scrum focusing on identified deviations during the

daily scrum, e.g., about the length of the daily scrum,

• Sprint Planning focusing on identified deviations during the

sprint planning, e.g. whether a product backlog is used, how

stories are selected, or whether and when goals are set for

the sprint,

• Retrospective focusing on identified deviations during the

retrospective, e.g. whether action points from previous ret-

rospective meetings were implemented, and

• Demonstrations focusing on identified deviations during the

demonstration.

The survey was sent out to 123 developers from different com-

panies in Gothenburg, Sweden, using convenience sampling. The

survey was answered anonymously. We received 34 responses,

mainly form developers (24), but also from Scrum masters, soft-

ware architects, and agile coaches. The median experience of the

respondents was 8 years. 12 of the respondents have 10 of more

years of experience and only 3 have less than 3 years of experience.

Furthermore, 5 respondents have 10 or more years of experience

specifically working with Agile and the remaining respondents’

experience with agile varied between 1 and 10 years.

As a result we gained a first indication of the frequency and,

with it, relevance of the identified deviations. We used the results to

filter out those deviations that we identified in the teams, but which

were only confirmed by few participants of the online survey. As

threshold for that we decided to only move on with those deviations

that were reported by at least 33% of the respondents. As a result, we

settled on 13 deviations. Note that none of the deviations observed

during the retrospective was frequently enough confirmed in the

online survey to be reported in this paper.

3.3 Interviews

Finally, we performed semi-structured interviews to get a better

understanding of the deviations and to also further confirm the

correctness of our observations. The main focus of the deviations

was to probe the developers’ classification of the deviations and

to learn more about causes and implications of the observed devi-

ations. We grouped questions based on the observed agile events

and the identified deviations. Leading and judgemental questions

were avoided.

The interviews were conducted with altogether six people. These

were developers from the two observed teams as well as a prod-

uct owner and a scrum coach, both working with the teams. With

respect for the working hours, most of the interviews took place

during lunch breaks. Most interviews were performed separately,

to avoid interviewees influencing and biasing each other. Only one

interview was performed with 2 developers at once. Developers

from both teams did not allow us to audio record the meetings.

Therefore, everything they said was noted down during the inter-

views. The notes were shared with the interviewees directly after

the interview, in order to confirm correctness. Each interview took

between 45 and 55 minutes.

4 RESULTS

In this section, we present the results on typical deviations, their

reasons and implications, sorted by research questions.

4.1 RQ1: What are typical deviations from the

Scrum framework?

We identified 13 deviations that seem to be typical for Scrum, con-

sisting of four deviations during the daily scrum event, seven devi-

ations during the sprint planning, and two deviations during the

sprint demonstration.

4.1.1 Daily Scrum Event. The two teams showcased some similari-

ties but also differences in their behaviors during the Daily Scrum

meetings. During the four observed days in each team, all mem-

bers attended the Daily Scrum meeting except of the agile coach

of Team A in one occasion. Some observed differences were the

average duration of the meetings, punctuality of the developers and

contribution of the developers in key questions addressed during

the meetings.

74

Not all key questions are addressed (DS1). In both, team A

and team B, we observed that key questions are systematically left

unanswered by developers. Also 61.76% (21) of the survey respon-

dents report that they do not answer all the questions. Of these, 7

respondents usually answer only parts of the key questions and 14

respondents do not answer any of the key questions. The question

that is most often left out is “Do I see any impediment that hinders

me or the development team from meeting the Sprint goal?”.

Not all team members contribute (DS2). We observed in one

of the two teams (team B) that many team members only attended

the meetings without actively contributing. Likewise, 14 of the sur-

vey respondents (41.2%) reported that they are not strict in making

all team members contribute. Furthermore, 22 (64.7%) respondents

report that their daily scrum meetings have the form of an open

discussion, rather than a structured one.

Daily scrum events take longer than 15 minutes (DS3). An-

other deviations we observed in team B is that the average observed

daily scrum event takes longer than 15 minutes. 53% of the survey

responses (18 respondents), too, report that their daily scrum event

needs more than 15 minutes. In 16 of these cases, the average time

needed for scrum event was even 20 or more minutes. Only 14 re-

spondents answered that the average scrum event takes 15 minutes

or less.

No fixed time for the daily scrum event (DS4). Finally, we

witnessed that team A had no fixed time schedules for the daily

scrum event. This made the observation of this event especially

difficult, forcing us to add an additional observation day, as one

meeting was missed by the observer. Moreover, 35.3% of the survey

respondents report that their teams are not having a fixed time to

practice the daily scrum event. An often named reason is that the

team waits for late team members.

4.1.2 Sprint Planning. In both teams, sprint planning, was prac-

ticed at the same office, where the team normally sits. Product

owner and all developers were present, with the exception of the

agile coach in team A. It took team A around 2 hours, while team

B spent around 1 hour and 15 minutes to finish their planning. The

planning meetings were noticed to be mainly unstructured, without

a predefined agenda and no special preparation.

Stories are not refined in the product backlog (SP1). Instead

of starting from a prepared product backlog and refining stories

from there, both teams were observed to only create a sprint back-

log during the planning meeting. Also, 44.1% (15) of the survey

respondents answered that they do not have a product backlog, but

only a sprint backlog.

No calculation of resources available for the upcoming sprint

(SP2). During the planning meetings, we noticed that both teams

did not calculate what resources they would have available during

the next sprint. This step is normally input for planning the amount

of workload. Similarly, 47.1% of the survey respondents (16 of 34)

reported to not discuss the available resources for the upcoming

sprint.

Sprint goal is defined at the end of the planning meeting

(SP3). Of the two observed teams only one defined a sprint goal.

That goal definition only happened at the end of the planning

meeting, when the tool forced them to do so. The other team focused

instead on the question "what to demo". The results from the survey

shows that 44.1% of the respondents (15 of 34) are also deviating by

not defining the sprint goal at the start of their planning meeting.

Even more importantly, additional 38% (12) of the respondents

reported that they are not used to define a sprint goal at all.

No break down of large stories (SP4). Another interesting ob-

servation was that one of the teams did not break down large

stories during the meeting. Instead stories were only defined by the

team and then broken into tasks by individual developers after the

meeting. Likewise, only 44.1% (15 of 34) of the survey respondents

reported that they break down stories, while the remaining 55.9%

answered that they do not.

No agenda used for the planning meeting (SP5). Both ob-

served teams had no agenda or other clear structure for the plan-

ning meeting. Also in the survey, 61.8% (21 of 34) of the respondents

reported that they are not using an agenda to organize their plan-

ning meeting. Of those respondents, 9 further revealed that they

are having long planning meetings (8 hours or longer). Specifically,

3 of them need around 16 hours to finish this meeting.

Stories are not estimated (SP6). We observed that one of the

teams did not estimate the effort of the stories. Also, 21 of the

survey respondents (61.8%) report that their teams are not always

estimating the stories.

Stories not formulated completely (SP7). Furthermore, we ob-

served that both teams defined stories only using title and a small

description, leaving out an index and documentation of estimation.

12 of the survey respondents (35.3%), too, reported that they do not

use any fields other than name and description to formulate their

stories. 52,9% of the respondents report that they are not or only

sometimes adding a description to their stories. Only 50% of the

survey respondents are indexing their stories.

4.1.3 Sprint Demonstration. The sprint demonstration we could

observe included 12 different teams, joining in a large room. Team-

names and developers’ pictures were attached to the wall. A white-

board was placed in the middle of the room.

Sprint does not end with a demonstration (SD1). One of the

two observed teams did not do a demonstration at all. Instead

they just performed a review of their sprint backlog. Likewise, 15

of the 34 survey respondents (44,12%) do not end their sprint by

performing a demonstration.

Demonstration to the wrong audience (SD2). The observed

team that performed a demonstration did so to other teams that have

no dependency on the outcome (instead of customers, stakeholders,

or internally dependent teams). Also in the survey, 61,8% of the

respondents answered that they do not get feedback from customers

or stakeholders after each sprint planning.

4.2 RQ2: What are the reasons for the

occurrence of the identified deviations?

The conducted interviews helped to understand the reasonswhy the

deviations occurred in the two teams A and B. In the following we

75

Table 4: Deviations caused by human factors.

Habit and

acceptance

DS2: Developers do not want to contribute when

they do not have anything to share.

SP3: Both teams are just used to it.

SP5: The power position of the Product Owner

and because of habit.

SP7: The name and description are good enough

for the teams.

Doubts on ex-

ternal factors

DS1: Belief that no practice is required to syn-

chronize a team’s findings.

Table 5: Deviations caused by organizational structures.

Roles of people

within the team

DS3: The number of developers and the high

number of issues that should be discussed.

SP1: No real Product Owner and ambiguity.

The team in the

organization

SD2: No other dependent teams.

sort these reasons into three groups: human factors, organizational

structure, and work complexity.

4.2.1 Human factors. In Table 4 the causes in this group are summa-

rized into two sub-groups. Some deviations in the sprint planning

seem to be caused by an attitude of following the way of smallest

resistance. Interviewees mention habit, power positions of specific

roles, and a feeling of "good enough", as reasons for the occurrence

of the deviations, such as defining a sprint goal at the end of the

planning meeting only or not having an agenda. On the other hand

we observed a deviation with a reason that was characterized by

the interviewees doubts about external factors, specifically about

the purpose of activities that are suggested to them as best practice.

This shows a lack of conviction. However, it is also a reminder that

developers are critical thinkers that do not blindly follow a practice

without knowing its purpose.

4.2.2 Organizational structures. The second overarching element

that classifies reasons for deviations is the organizational structure,

i.e. the question how a team is organized and how it interacts with

the rest of the organization, as summarized in Table 5. On the

one hand, deviations can be caused by the team composition and

roles of the team members. Thus, we found that a high number of

developers in a team and the lack of a clear product owner leads

to meetings that exceed the predefined duration and stories that

are not refined on the product backlog. On the other hand, the role

of the team in the organization can play a role. In this case we

observed that the position in the organization can affect the ability

to meaningfully perform certain activities.

4.2.3 Work complexity. Finally, as illustrated in Table 6, the com-

plexity of a team’s work is an element that groups reasons for devi-

ations. First, planning and scheduling of resources groups several

reasons. It refers to the ways that the work of teams is influenced

because of challenges in planning and coordination of the work.

Table 6: Deviations caused by the complexity of work.

Planning &

Scheduling

of resources

DS4:Waiting developers to arrive, and conflicting

meetings.

SP2: Too much freedom and projected absences

for vacations.

SP4: To save time and due to the difficulty of the

product.

Technical

Issues

SD1: Difficulties of the product.

SP6: Complexity of the product.

For example, it is difficult to have a fixed time for the daily scrum

event when developers have conflicting meetings that make them

arrive late. Second, technical issues can be a reason for deviations.

For example, difficulties with and complexity of the product can

lead to skipping demonstrations and teams not estimating their

stories.

4.3 RQ3: What are the implications of the

identified deviations?

Finally, we used the interviews with members of the teams A and

B to learn more about the implications of the deviations and the

developer’s perception of these.

We analysed the implications and grouped them according to

what they impact. these groups can be further split into two clus-

ters on implications: implications on product development and

implications on teamwork.

4.3.1 Product Development. The first cluster is about the implica-

tions that affect on the development of the product. We identified

two types of deviations in this cluster: deviations that affect the

work on value adding activities as well as deviations that affect the

quality of the product and achievement of goals.

Work on value adding activities. The work that a team can put

into value adding activities can be limited by deviations, which

distract the teams with other tasks. For example, the interviewed

scrum master reported an incident where the lack of answering all

key-questions (DS1) led to identifying issues very late in the sprint.

This in turn caused distraction as all team members redirected their

efforts to fixing the issue before the sprint, losing time for other

tasks. Furthermore, developers report that the deviation of not

having a product backlog (SP1) can lead to the failure of including

relevant stories into the sprint. This however, can cause other stories

to get blocked, causing a failure to implement them.

Finally, our interviewees report that two of the deviations during

the sprint planning (the sprint goal is defined at the end of the

planning meeting (SP3) and stories are not formulated completely

(SP7)) can cause the inclusion of irrelevant stories. The developers

perceive deviation SP7 to further lead to ambiguity and difficulty

to understand stories.

Product quality and achievement of goals. Deviations seem to

be the cause of implications for product quality as well. For exam-

ple, the above described consequence of deviation DS1 (not all key

questions are addressed in the Daily Scrum event) was reported to

76

Table 7: Deviations’ implications on product development

Working on

value adding

activities

DS1: Issues can be raised late at the sprint which

causes effort from all team members to focus on

solving the issue before sprint demonstration.

SP1: Failure to implement important required

features.

SP3 & SP7: Inclusion of irrelevant stories.

Quality and

achievement

of goals

DS1: Bugs in features.

SP1: Difficulties in defining sprint goal.

SP2 & SP4: Unfinished stories during one sprint.

SP4 & SP6: Team does not achieve the sprint goal.

lead to additional bugs in the new features. Omitting to calculating

the number of available developers for the upcoming sprint (SP2)

and to break down large stories (SP4), were both associated with

unfinished tasks and overload of the team. Furthermore, the above

already discussed deviation of not having a product backlog (SP1)

was further reported by the interviewed scrum master to cause dif-

ficulties when defining the sprint goal. Finally, besides SP4 another

deviation was associated with a direct failure to achieve the sprint

goal: the deviation of not estimating the stories (SP6). This was

directly associated to sprint failure by the agile coach of team A.

4.3.2 Teamwork. The second cluster is about the implications that

deviations have on the work of teams. As summarized in Table

8, we identified three types of implications affecting teamwork:

deviations that influence the morale of the team, deviations that

influence the organization and planning of the team, and deviations

that influence the activities of the team.

Morale. Team morale groups the more intangible consequences

that deviations can have on developers. First of all, some intervie-

wees reported that the deviation of not answering all daily scrum

questions (DS1) and team members not contributing to the meeting

(DS2) causes a loss of trust between the team members. Two devia-

tions were reported to cause fatigue and loss of focus in the team

members. On the one hand, this was the deviation of a daily scrum

event taking longer than 15 minutes (DS3). On the other hand, the

deviation of not having a product backlog (SP1) was named as a

cause for boring meetings. Also the deviation of having no agenda

for the planning meeting (SP5), was named a main cause for loss of

focus and fatigue.

Organization and Planning. Deviations can also have an impact

on how teams are organized and their work planning. Missing to

calculate the resources available for the upcoming sprint (SP2), was

reported to lead to an increased workload for the team. Further-

more, missing to break down large stories (SP4) was reported to

increase difficulty to trace progress and stay updated on the tasks.

Performing a sprint demonstration to the wrong audience (SD2)

leads to confusion in the team. Furthermore, ending the sprint with-

out a demonstration (SD1) was reported to have led to situations

where changes to features were requested very late at a stage where

it was hard to still modify them.

Table 8: Deviations’ implications on teamwork

Team morale
DS1 & DS2: Loss of trust between members in the

team.

DS3, SP5 & SP1: Fatigue and members lose their

focus.

Team

organization

and planning

SP2: Increased workload for the team.

SP4: Difficulties staying aligned with updated

information on tasks.

SD2: Confusion within the team.

SD1: Hard to modify features at late stages.

Team

activities

DS3: Cut the meeting before every team member

contributed.

DS4: Skip the daily scrum meeting.

SP1 & SP5: Complex and prolonged/ unfinished

planning meetings.

Activities. Finally, we found that deviations can cause further

deviations. For example, some interviewees reported that taking

longer than 15 minutes for the daily scrum meeting (DS3) leads to

teams cutting of meetings without giving the turn to everybody to

speak. The lack of a fixed time for the daily scum event (DS4) can

lead to teams skipping these meetings. This was perceived as neg-

ative by our interviewees. Furthermore, waiting for the meetings

led, according to the interviewees to situations of surprise that the

meeting happened, which in turn caused people to be not prepared.

Not having the stories in the product backlog (SP1) was reported

to cause difficulties when refining stories and thus longer planning

meetings. Similarly, not using an agenda (SP5) was reported to

cause prolonged and unfinished meetings.

4.3.3 Varying perception of deviations. As a final note, it is to be

said that not all developers perceived each deviation as necessarily

problematic. Specifically, deviations that take place deliberately

are recognised by some team members as aspects of improvement.

For example, the deviation to not break down stories (SP4) was

perceived positive by some, as it helped to shorten already too long

planning meetings. Furthermore, the deviation of not answering all

daily scrum questions (DS1) and the deviation of not time-boxing

the daily scrum (DS3), are perceived as neutral by some interviewed

developers. They expressed the opinion that the deviations are

harmless and that there is no significant advantage in answering

the questions or in being very strict with the duration.

5 DISCUSSION

Our results uncovered 13 deviations from the Scrum framework

that seem to be typical, i.e. can be found in different companies.

Furthermore, wewere able to learn about reasons for the occurrence

of the deviations and about implications of the deviations. We

grouped these reasons and implications to allow an abstraction

over their types.

In the following, we discuss how our results can be utilized by

practitioners, relations to related work, implications for research,

and threats to validity of our results.

77

5.1 A method for debugging deviations

Our results can directly be utilized by practitioners, who observe

problems in their daily work and want to identify the reasons for

that. First of all, the findings of this study can be used to increase

awareness about implications of deviations. Furthermore, the above

uncovered relations between reasons, deviations, and implications

can be used for analysing observed problems and identifying poten-

tial changes that can be made to improve the situation. Therefore,

we formulate a simple method for practitioners to “debug their pro-

cess” shown in Figure 2. This method can be used for a preliminary

root-cause-analysis of symptoms that are potentially a consequence

of a deviation. Practitioners can apply the following steps:

Figure 2: Method for Process Debugging

5.1.1 Step 1 Classify the problem. Practitioners who observe prob-

lems in their teams can use the Tables 7 and 8 for a first classification

of the problem. Problems that fall in one of the 5 implication groups

(‘Quality and achievement of goals’, ‘Working on value adding ac-

tivities’, ‘Teammoral’, ‘Team organization and planning’, and ‘Team

activity’) are candidates for a further investigation. It is possible

that the problem is identical to one of those listed in Tables 7 and 8

under these groups. However, it is also possible that the problem is

just similar to one of these already known problems. For example, a

problem might be that team members are more and more unaware

about the work progress of others and get stuck because they are

not aware that the needed input is already finished. This could be

classified as a problem of team organization and planning.

5.1.2 Step 2 Relate a problem to a deviation. Now that the problem

is classified practitioners can use the tables to start identifying

potential deviations causing the problem. The problems identified

in this study can be used as a hint about what part of the process to

analyze. In the example, the practitioners might start to look out for

deviations of the types SP2, SP4, SD2, and SD1, as these are already

associated to problems in the ‘team organization and planning’

group. If a deviation is identified, practitioners can discuss as a

team whether they perceive this deviation to be the cause for the

observed problem.

5.1.3 Step 3 Relate deviation with class of reasons. If such a devia-

tion is identified as the cause for the problem, the next challenge is

to understand where the deviation comes from. Here practitioners

can use Tables 4, 5, and 6, to identify what types of reasons are

associated with this or similar deviations. In the example above,

the deviation identified as cause for the problem could be a missing

break-down of stories. Given the deviations we identified in this

paper, this could be a hint to look at planning and scheduling of

the team. It could be that developers are trying to save time during

the planning meetings.

5.1.4 Step 4 Develop targeted strategy to mitigate them. Once a

reason for the occurrence of a deviation is identified, practitioners

are in a position to developmitigation strategies. Unfortunately, this

can so far not be supported by the result of our study and, therefore,

needs to be solved in each team individually. However, we argue that

being aware of the cause of a problem is crucial to enable a solution.

Of course the deviations identified in this study are just an initial set.

Future work will have to further complete the list in order to make

the debugging method even more applicable for practitioners. The

contents of the groups of reasons and implications can be enriched

further with more points that are related to the same thing.

5.2 Relation of results to related work

It has been evident from previous studies that it is challenging to

apply processmodels and frameworks such as Scrum by the guide [4,

6, 9]. However, specific reasons of this difficulty are rarely explored

with focus on specific activities of the processes [8]. Literature

on deviations focuses rather on the process level, with scope on

the overall process enactment [3, 5]. This study’s results analyse

deviations in depth and decompose them into indicative reasons and

implications. With this decomposition, elements are identified that

might alter existing explanations for the difficulties on applying

process models and frameworks. For example, it is evident that

processes following multiple frameworks can be more suitable to

teams [11] and deviations can have positive or negative impact on

performance [20]. We also observed this, as some deviations were

perceived as useful or at least neutral by developers. Nonetheless

our sample mostly included deviations with negative impact.

Furthermore, our findings are distinct from those of process

tailoring research [10], as deviations are not planned and can have

negative effects on the process. Nonetheless, it would be interesting

to further study the relation between both fields in future work, as

deviations might be a hint that a further tailoring of the process

is required. Moreover, tailoring of a process with the intention

to improve it, can also have unintentional implications that are

negative and risks [8]. Deviations of a process do not always happen

in order to improve it, but because it is more convenient and thus,

they are unintentional deviations. For example, this could happen

because it fits better with the team culture [14].

78

The proposed simple method for debugging of deviations, pro-

vides a way to identify both intentional and unintentional devia-

tions and trace them based on their implications. This shows how

knowledge about the deviations and their implications can be uti-

lized for process improvement [21].

5.3 Implications for future research

We highlight implications that our findings have for future research.

5.3.1 Construction and design of process models. Researchers who

construct new or compose different process models can benefit from

understanding and considering deviations. Specifically, our results

provide the opportunity to consider reasons for the occurrence of

deviations from the design phase of process models. Thus, common

characteristics that lead to such might be avoided deviations or

mitigation strategies could be built into the process. Having in mind

the human aspects that lead to deviations can prevent the inclusion

of activities and practices that cannot be followed [15]. Also, taking

into account the effects of deviations can give a different perspective

about design choices that are needed. For example, if particular

updates on activities are noticed in the identified reasons (or are

equal to known deviations) then the projected implications should

be considered. Process designers cannot assume that developers are

going to follow a process by the guide [6], but it is more accurate

to assume that developers will deviate. Hence, the design approach

of the process can be changed accordingly. Taking into account

that people are going to deviate means that it is useful to study

deviations from the start and identify which deviations are to be

expected and what is the potential impact. Therefore, when moving

to a new practice, the preliminary assessment is more educated

with the perspectives of the developers and their work.

5.3.2 Empirical research on deviations. Empirical research in soft-

ware processes can benefit from the consideration of deviations

and their underlying elements to give more comprehensive expla-

nations of various phenomena that appear in processes and their

activities. This study explores the existence and underlying ele-

ments of deviations. However, there is a need to further explore

what types of deviations occur in other processes. We identified

relations between reasons, deviations, and implications. Future re-

search will have to show whether the same deviation can be caused

by different reasons and whether implications of deviations are

stable with changing contexts. Moreover, different contexts have

the potential to further elaborate the existing types of deviations

or even enrich with new types.

Additionally, this study touches upon the qualitative exploration

and identification of deviations, without a substantial quantitative

analysis. Therefore, an important direction for futureworkwould be

to quantify the ways in which teams deviate from processes as well

as the impact of deviations. Such a quantification has the potential

to showcase whether agile teams deviate from suggested practices

intentionally in order to specialize an adopted process or whether

teams deviate unintentionally due to other factors that lead to a

lack of conformity. Another example of quantifying the impact of

deviations would be to relate deviations with specific characteristics

of artifacts that teams develop. Specifically, our suggestion for a

future study is to measure specific quality attributes of developed

products and investigate how these measurements relate to certain

deviations. A potential way to achieve this besides experiments, is

with comparing the results of this study with results from analysing

data-sets like the one in the HELENA study [11].

5.3.3 Deviations in hybrid processes. We expect deviations to be-

come more complex when considering hybrid processes, i.e. pro-

cesses that follow a combination of models and frameworks. For

example, deviations that appear in hybrid situations might be cause

by different process philosophies. Furthermore, such deviations

might reveal a teams tendency to adopt a different model or frame-

work than agreed upon. More importantly, during the adoption of

hybrid processes or the tailoring of a process, it is beneficial to have

an indication of the potential consequences [10]. Such an analysis

of deviations like the one of this study, can reveal the unintended

consequences of intended changes.

5.3.4 Problem prediction. In future, relating deviations with their

reasons and implications along with the potential quantification

of their relations, can be used as an input for creating models

that predict specific consequences and implications that certain

behaviors of teams can result to. Therefore, the area of Artificial

Intelligence can use the reasons to make predictions about teams

and their work. However, this predisposes that causality is further

quantified and proved between reasons and implications.

5.4 Threats to Validity

In the following we discuss internal and external threats to validity.

5.4.1 Internal threats to validity. During the observation activity,

one threat is changes in behaviors of participants while being ob-

served. This could lead to having some incorrect measurements. To

mitigate this, we aimed to be as non-intrusive as possible during the

observations. It is still possible that our presence with the team has

had an effect. We further confirmed in the interviews that observed

deviations occur also without our presence in the team.

Another threat is the observer’s bias on what was noticed. The

presence of the researcher was as discrete as possible and thus, it

was avoided to ask developers during practicing their scrum events

to clarify anything since this could affect their actions and decisions.

Thus, the initial results are based entirely on what the observer

perceived, which makes it possible that deviations were missed

during the observation. To enable the observer to collect as much

information as possible, templates were prepared to capture the

observations. This allowed for a structured gathering of information

and to hopefully minimize amount of deviations not identified

during the observations.

One threat that was encountered during the interviews was team

members’ tendency to talk about the practices they were supposed

to follow, instead of the practices they are actually following. Here it

helped that we performed the observations ahead of the interviews

as it helped us to point to specific events during the interview.

To avoid misunderstandings in the online survey, we kept the

questions as simple and short as possible to avoid confusion and

make them easy to comprehend. However, it is difficult to fully ex-

clude the possibility of misunderstandings. Therefore, we mitigate

the risk by triangulating with the observations and interview data.

Only deviations recorded via all three data collection methods were

79

included in this paper. Two other threats during the interviews can

be the wish of the interviewees to please the interviewer with their

answers or interviewees’ fear of retributions when sharing some

information. While the first one leads to the risk that consequences

of deviations are overstated, the latter can cause participants to

avoid talking about these consequences. In addition, in one of the

teams the product owner is also a developer, which can have its

influences for certain deviations. Future research will have to be

performed to further support or dismiss the generalizability and

relevance of the collected implications.

5.4.2 External validity. In terms of external validity, there are also

some threats that were identified. Of course, observing a larger

sample size of two teams could have lead to even deeper insights.

Similarly, a larger number of participants in the online surveys

could have further increased our understanding of the frequencies

of the deviations. Nonetheless, gaining access to two team already

revealed a large amount of detail about how deviations from Scrum

look like. In addition, both teams are based in Sweden and there-

fore, the results are specific to the Swedish Software Development

culture, which might have some differences from other cultures.

Furthermore, generalizability of the results needs to be further

shown in future work. While our triangulation shows that the

results might be valid across different companies, it is possible that

there is an undisclosed cultural component to deviations. Similarly,

we only studied scrum. Thus, it is not clear how much our results

apply to other process models.

Finally, one of the observed teams was reorganised shortly after

the study which means that it could be a case with very specific

characteristics. However, again the used triangulation with the sur-

vey and the other team indicates that the here presented deviations

are not specific to that case.

6 CONCLUSION

In this study we addressed the question of how deviations from

Scrum look like in practice. Using a mix of observations, online

survey, and interviews, we identified 13 deviations from the scrum

framework. We further studied reasons for the occurrence of devi-

ations, which were grouped into three clusters of two types each.

In addition, we identified implications of the deviations and sorted

them into two clusters that together have five types. We believe

that these insights will help development teams to become more

aware about how deviations work and what they can cause. Thus,

we want to enable practitioners to improve their processes, e.g.,

by understanding deviations from best practices it is possible to

address challenges and consequently tackle these challenges in

a targeted and personalized way. For example, through training

initiatives of software development team members.

ACKNOWLEDGMENTS

Special thanks to Cybercom for facilitating the access to the 2

software teams. Also, we would like to thank the participants of the

study for their support and cooperation during the observations,

interviews and for their time to answer the survey.

REFERENCES
[1] Gordon Baxter and Ian Sommerville. 2011. Socio-technical systems: From design

methods to systems engineering. Interacting with Computers 23, 1 (2011), 4–17.
https://doi.org/10.1016/j.intcom.2010.07.003

[2] Kent Beck, James Grenning, Robert Martin, Mike Beedle, Jim Highsmith, and
Steve Mellor. 2001. Manifesto for Agile Software Development. The Agile Alliance
(2001). http://agilemanifesto.org/

[3] Sorana Cîmpan and Flavio Oquendo. 2000. Dealing with software process de-
viations using fuzzy logic based monitoring. ACM SIGAPP Applied Computing
Review 8, 2 (dec 2000), 3–13. https://doi.org/10.1145/373975.373979

[4] Paul Clarke and Rory V. O’Connor. 2012. The situational factors that affect the
software development process: Towards a comprehensive reference framework.
Information and Software Technology 54, 5 (2012), 433–447. https://doi.org/10.
1016/j.infsof.2011.12.003

[5] Gianpaolo Cugola. 1998. Tolerating deviations in process support systems via
flexible enactment of process models. IEEE Transactions on Software Engineering
24, 11 (1998), 982–1001. https://doi.org/10.1109/32.730546

[6] Marcos Aurélio Almeida Da Silva, Reda Bendraou, Jacques Robin, and Xavier
Blanc. 2011. Flexible deviation handling during software process enactment. In
Proceedings - IEEE International Enterprise Distributed Object ComputingWorkshop,
EDOC. Institute of Electrical and Electronics Engineers Inc., 34–41. https://doi.
org/10.1109/EDOCW.2011.37

[7] Torgeir Dingsøyr, Sridhar Nerur, Venugopal Balijepally, and Nils Brede Moe. 2012.
A decade of agile methodologies: Towards explaining agile software development.
, 1213–1221 pages. https://doi.org/10.1016/j.jss.2012.02.033

[8] Veli Pekka Eloranta, Kai Koskimies, and Tommi Mikkonen. 2016. Exploring
ScrumBut - An empirical study of Scrum anti-patterns. Information and Software
Technology 74 (jun 2016), 194–203. https://doi.org/10.1016/j.infsof.2015.12.003

[9] Mohammed Kabbaj, Redouane Lbath, and Bernard Coulette. 2007. A deviation-
tolerant approach to software process evolution. In International Workshop on
Principles of Software Evolution (IWPSE). 75–78.

[10] Georg Kalus and Marco Kuhrmann. 2013. Criteria for software process tailoring:
A systematic review. In ACM International Conference Proceeding Series. 171–180.
https://doi.org/10.1145/2486046.2486078

[11] Jil Klunder, Regina Hebig, Paolo Tell, Marco Kuhrmann, Joyce Nakatumba-
Nabende, Rogardt Heldal, Stephan Krusche,Masud Fazal-Baqaie, Michael Felderer,
Marcela Fabiana Genero Bocco, Steffen Kupper, Sherlock A. Licorish, Gustavo
Lopez, Fergal McCaffery, Ozden Ozcan Top, Christian R. Prause, Rafael Prik-
ladnicki, Eray Tuzun, Dietmar Pfahl, Kurt Schneider, and Stephen G. Mac-
Donell. 2019. Catching up with Method and Process Practice: An Industry-
Informed Baseline for Researchers. In Proceedings - 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: Software Engineering in Practice,
ICSE-SEIP 2019. Institute of Electrical and Electronics Engineers Inc., 255–264.
https://doi.org/10.1109/ICSE-SEIP.2019.00036

[12] Henrik Kniberg. 2015. Scrum and XP from the Trenches. Lulu. com.
[13] Filippo Lanubile and Giuseppe Visaggio. 2000. Evaluating Defect Detection Tech-

niques for Software Requirements Inspections. International Software Engineering
Research Network (ISERN) (2000), 24.

[14] M. R.R. Lazwanthi, Abeer Alsadoon, P. W.C. Prasad, S. Sager, and Amr Elchouemi.
2016. Cultural impact on agile projects: Universal agile culture model (UACM).
In 2016 7th International Conference on Information and Communication Systems,
ICICS 2016. Institute of Electrical and Electronics Engineers Inc., 292–297. https:
//doi.org/10.1109/IACS.2016.7476067

[15] Per Lenberg, Robert Feldt, and Lars Göran Wallgren. 2015. Behavioral software
engineering: A definition and systematic literature review. Journal of Systems
and Software 107 (2015), 15–37. https://doi.org/10.1016/j.jss.2015.04.084

[16] Yngve Lindsjørn, Dag I.K. Sjøberg, Torgeir Dingsøyr, Gunnar R. Bergersen, and
Tore Dybå. 2016. Teamwork quality and project success in software development:
A survey of agile development teams. Journal of Systems and Software 122 (dec
2016), 274–286. https://doi.org/10.1016/j.jss.2016.09.028

[17] Bertrand Meyer. 2014. The Ugly, the Hype and the Good: an assessment of the
agile approach. In Agile! The Good, the Hype and the Ugly. Springer International
Publishing, Chapter 11, 149–154. https://doi.org/10.1007/978-3-319-05155-0_11

[18] Ken Schwaber and Jeff Sutherland. 2013. The scrum guide-the definitive guide to
scrum: The rules of the game. www.scrumguides.org, 2017 (2013).

[19] Borislava I. Simidchieva, Leon J. Osterweil, and Alexander Wise. 2009. Structural
considerations in defining executable process models. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Vol. 5543 LNCS. 366–376. https://doi.org/10.1007/978-
3-642-01680-6_33

[20] Viktoria Stray, Dag I.K. Sjøberg, and Tore Dybå. 2016. The daily stand-up meeting:
A grounded theory study. Journal of Systems and Software 114 (apr 2016), 101–124.
https://doi.org/10.1016/j.jss.2016.01.004

[21] Michael Unterkalmsteiner, Tony Gorschek, A. K.M.Moinul Islam, Chow Kian
Cheng, Rahadian Bayu Permadi, and Robert Feldt. 2012. Evaluation and mea-
surement of software process improvement-A systematic literature review. ,
398–424 pages. https://doi.org/10.1109/TSE.2011.26

80

