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ABSTRACT
Parallel coordinates are an established technique to visual-
ize high-dimensional data, in particular for data mining pur-
poses. A major challenge is the ordering of axes, as any axis
can have at most two neighbors when placed in parallel on
a 2D plane. By extending this concept to a 3D visualization
space we can place several axes next to each other. How-
ever, finding a good arrangement often does not necessarily
become easier, as still not all axes can be arranged pairwise
adjacently to each other. Here, we provide a tool to explore
complex data sets using 3D-parallel-coordinate-trees, along
with a number of approaches to arrange the axes.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Data Visualization Methods
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1. INTRODUCTION
Automated data mining methods for mining high-dimen-

sional data, such as subspace and projected clustering [5,
6, 11] or outlier detection [7, 22, 26], found much attention
in database research. Yet all methods in these fields are
still immature and all have deficiencies and shortcomings
(see the discussion in surveys on subspace clustering [24,25,
27] or outlier detection [32]). Visual, interactive analysis
and supporting tools for the human eye are therefore an
interesting alternative but are susceptible to the “curse of
dimensionality” themselves.

Even without considering interactive features, visualizing
high-dimensional data is a non-trivial challenge. Traditional
scatter plots work fine for 2D and 3D projections, but for
high-dimensional data, one has to resort to selecting a sub-
set of features. Technically, a 3D scatter plot also is a 2D
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Iris Flower Data Set

(a) Pairwise scatterplots (b) 3D scatterplot

Figure 1: Visualization examples for Iris data set

Figure 2: Parallel coordinates plot for Iris data set

visualization. In order to get a proper 3D impression, ani-
mation or stereo imaging is needed. In Figure 1(a), each pair
of dimensions is visualized with a scatter plot. Figure 1(b)
visualizes 3 dimensions using a scatter plot.

Parallel coordinates were popularized for data mining by
Alfred Inselberg [18, 19]. By representing each instance as
a line path, we can actually visualize more than 2 dimen-
sions on a 2 dimensional plane. For this, axes are placed in
parallel (or alternatively, in a star pattern), and each object
is represented by a line connecting the coordinates on each
axis. Figure 2 is the same data set as above, with the four
dimensions parallel to each other. Each colored line is one
observation of the data set. Some patterns become very well
visible in this projection. For example one of the classes is
clearly separable in attributes 3 and 4, and there seems to
be an inverse relationship between axes 1-2 as well as 2-3:
one of the three Iris species has shorter, but at the same
time wider sepal leaves. Of course in this particular, low-
dimensional data set, these observation can also be made on
the 2D scatter plots in Figure 1(a).
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2. RELATED WORK
The use of parallel coordinates for visualization has been

extensively studied [18, 19]. The challenging question here
is how to arrange the coordinates, as patterns are visible
only between direct neighbors. Inselberg [18] discusses that
O(N/2) permutations suffice to visualize all pairwise rela-
tionships, but does not discuss approaches to choose good
permutations automatically. The complexity of the arrange-
ment problem has been studied by Ankerst et al. [8]. They
discuss linear arrangements and matrix arrangements, but
not tree-based layouts. While they show that the linear
arrangement problem is NP-hard – the traveling salesman
problem – this does not hold for hierarchical layouts. Guo
[15] introduces a heuristic based on minimum spanning trees,
that actually is more closely related to single-linkage clus-
tering, to find a linear arrangement. Yang et al. [31] dis-
cuss integrated dimension reduction for parallel coordinates,
which builds a bottom-up hierarchical clustering of dimen-
sions, using a simple counting and threshold-based similarity
measure. The main focus is on the interactions of hiding and
expanding dimensions. Wegenkittl et al. [30] discuss parallel
coordinates in 3D, however their use case is time series data
and trajectories, where the axes have a natural order or even
a known spatial position. As such, their parallel coordinates
remain linear ordered. A 3D visualization based on parallel
coordinates [12] uses the third dimension for separating the
lines by revolution around the x axis to obtain so called star
glyphs. A true 3D version of parallel coordinates [20] does
not solve or even discuss the issue of how to obtain a good
layout: one axis is placed in the center, the other axes are
arranged in a circle around it and connected to the center.
Tatu et al. [29] discuss interestingness measures to support
visual exploration of large sets of subspaces.

3. ARRANGING DIMENSIONS

3.1 Similarity and Order of Axes
An important ingredient for a meaningful and intuitive

arrangement of data axes is to learn about their relation-
ship, similarity, and correlation. In this software, we provide
different measures and building blocks to derive a meaning-
ful order of the axes. A straightforward basic approach is
to compute the covariance between axes and to derive the
correlation coefficient. Since strong positive correlation and
strong negative correlation are equally important and inter-
esting for the visualization (and any data analysis on top of
that), only the absolute value of the correlation coefficient
is used to rank axis pairs. A second approach considers the
amount of data objects that share a common slope between
two axes. This is another way of assessing a positive corre-
lation between the two axes but for a subset of points. The
larger this subset is, the higher is the pair of axes ranked.
Additionally to these two baseline approaches, we adapted
measures from the literature: As an entropy based approach,
we employ MCE [15]. It uses a nested means discretization
in each dimension, then evaluates the mutual information of
the two dimensions based on this grid. As fourth alternative,
we use SURFING [9], an approach for selecting subspaces
for clustering based on the distribution of k nearest neighbor
distances in the subspace. In subspaces with a very uniform
distribution of the kNN distances, the points themselves are
expected to be uniformly distributed. Subspaces in which
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Figure 3: Axis layout for cars data set

the kNN distances differ strongly from the mean are ex-
pected to be more useful and informative. HiCS [21] is a
Monte Carlo approach that samples a slice of the data set in
one dimension, and compares the distribution of this slice to
the distribution of the full dataset in the other slices. This
method was actually proposed for subspace outlier detec-
tion, but we found it valuable for arranging subspaces, too.
Finally, a recent approach specifically designed to support
visual exploration of high-dimensional data [28] is ordering
dimensions according to their concentration after perform-
ing the Hough transformation [17] on the 2D parallel coor-
dinates plot.

3.2 Tree-Visualization
Based on these approaches for assessing the similarity of

axes, we compute a pairwise similarity matrix of all dimen-
sions. Then Prim’s algorithm is used to compute a mini-
mum spanning tree for this graph, and one of the most cen-
tral nodes is chosen as root of the visualization tree. This
is a new visualization concept which we call 3D-parallel-
coordinate-tree (3DPC-tree). Note that both building the
distance matrix and Prim’s algorithm run in O(n2) complex-
ity, and yet the ordering can be considered optimal. So in
contrast to the 2D arrangement, which by Ankerst et al. [8]
was shown to be NP-hard, this problem actually is easier in
3 dimensions due to the extra degree of freedom. This ap-
proach is inspired by Guo [15], except that we directly use
the minimum spanning tree, instead of extracting a linear
arrangement from it. For the layout of the axis positions,
the root of the 3DPC-tree is placed in the center, then the
subtrees are layouted recursively, where each subtree gets
an angular share relative to their count of leaf nodes, and
a distance relative to their depth. The count of leaf nodes
is more relevant than the total number of nodes: a chain of
one node at each level obviously only needs a width of 1.

Figure 3 visualizes the layout result on the 2D base plane
for an example data set containing various car properties
such as torque, chassis size and engine properties. Some
interesting relationships can already be derived from this
plot alone, such that the fuel capacity of a car is primarily
connected to the length of the car (longer cars in particular
do have more space for a tank), or the number of doors
being related to the height of the car (sports cars tend to
have fewer doors and are shallow, while when you fit more
people in a car, they need to sit more upright).

3.3 Outlier- or Cluster-based Color Coding
An optional additional function for the visualization is

to use color coding of the objects according to a clustering
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Figure 4: 3DPC-tree plot of Haralick features for
10692 images from ALOI, ordered by the HiCS mea-
sure.

Figure 5: Degenerate k-means result on Haralick
vectors

or outlier detection result. As our 3DPC-tree interactive
visualization is implemented using the ELKI framework [3,
4], a wide variety of such algorithms comes with it, such as
specialized algorithms for high-dimensional data (e.g., SOD
[22], COP [23], or subspace clustering algorithms [1, 2, 5, 6,
10,11]) but also many standard, not specialized, algorithms.

Using color-codes of some algorithm result in the visual-
ization is usefull for example to facilitate a convenient anal-
ysis of the behavior of the algorithm.

4. DEMONSTRATION SCENARIO
In this demonstration, we present software to interactively

explore and mine large, high-dimensional data sets. The
view can be customized by selecting different arrangement
measures as dicussed above, and can be rotated and zoomed
using the mouse. By using OpenGL accelerated graphics, we
obtain a reasonable visualization speed even for large data
sets (for even larger data sets, sampling may be necessary,
but will also be sensible to get a usable visualization).

As an example dataset analysis, Figure 4 visualizes Har-
alick [16] texture features for 10692 images from the ALOI
image collection [14]. The color coding in this image cor-
responds to the object labels. Clearly there is some redun-
dancy in these features, that can be intuitively seen in this
visualization. Dimensions in this image were aligned using
the HiCS [21] measure. For a full 3D impression, rotation of
course is required.

(a) Default linear arrangement

(b) 3DPC-tree plot

Figure 6: Sloan SDSS quasar dataset.

Visualization is an important control technique. For ex-
ample, naively running k-means [13] on this data set will
yield a result that at first might seem to have worked. How-
ever, when visualized as in Figure 5, it becomes visible that
the result is strict in both the attributes “Variance” and
“SumAverage” – and in fact a one dimensional partition-
ing of the data set. This of course is caused by the different
scales of the axes. Yet, k-means itself does not offer such a
control fuctionality.

Figure 6 visualizes the Sloan Digital Sky Survey quasar
data set1. The first plot visualizes the classic parallel coor-
dinates view, the second plot the 3DPC-tree using covari-
ance similarity. Colors are obtained by running COP out-
lier detection [23] with expected outlier rate 0.0001, and the
colorization thresholds 90% (red) and 99% (yellow) outlier
probability. The 3DPC-tree visualization both shows the
important correlations in the data set centered around the
near-infrared J-band and X-ray attributes, and the complex
overall structure of the data set. The peaks visible in the
traditional parallel plot come from many attributes in pairs
of magnitude and error. In the 3DPC-tree plot, the error at-
tributes are on the margin and often connected only to the
corresponding band attribute. With a similarity threshold,
they could be pruned from the visualization altogether.

While the demonstration will focus on the visualization
technique, we hope to inspire both new development with
respect to measuring the similarity of dimensions, layouting
methods of axes in the visualization space, and novel ideas
for feature reduction and visual data mining in general. By
integrating the visualization into the leading toolkit for sub-
space outlier detection and clustering, the results of various
algorithms can visually be explored. Furthermore, we want
to encourage the integration of unsupervised and manual (in
particular visual) data mining approaches.

1http://astrostatistics.psu.edu/datasets/SDSS_
quasar.html
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5. CONCLUSIONS
We provide an open source software for interactive data

mining in high-dimensional data, supporting the researcher
with optimized visualization tools. This software is based
on ELKI [3, 4] and, thus, all outlier detection or clustering
algorithms available in ELKI can be used in preprocessing to
visualize the data with different colors for different clusters
or outlier degrees. This software is available with the release
0.6 of ELKI at http://elki.dbs.ifi.lmu.de/.
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Computing clusters of correlation connected objects.
In Proc. SIGMOD, pages 455–466, 2004.

[12] E. Fanea, S. Carpendale, and T. Isenberg. An
interactive 3d integration of parallel coordinates and
star glyphs. In Proc. INFOVIS, pages 149–156. IEEE,
2005.

[13] E. W. Forgy. Cluster analysis of multivariate data:
efficiency versus interpretability of classifications.
Biometrics, 21:768–769, 1965.

[14] J. M. Geusebroek, G. J. Burghouts, and A. Smeulders.
The Amsterdam Library of Object Images. Int. J.
Computer Vision, 61(1):103–112, 2005.

[15] D. Guo. Coordinating computational and visual
approaches for interactive feature selection and
multivariate clustering. Information Visualization,
2(4):232–246, 2003.

[16] R. M. Haralick, K. Shanmugam, and I. Dinstein.
Textural features for image classification. IEEE
TSAP, 3(6):610–623, 1973.

[17] P. V. C. Hough. Methods and means for recognizing
complex patterns. U.S. Patent 3069654, December 18
1962.

[18] A. Inselberg. Parallel coordinates: visual
multidimensional geometry and its applications.
Springer, 2009.

[19] A. Inselberg and B. Dimsdale. Parallel coordinates: a
tool for visualizing multi-dimensional geometry. In
Proc. VIS, pages 361–378, 1990.

[20] J. Johansson, P. Ljung, M. Jern, and M. Cooper.
Revealing structure in visualizations of dense 2d and
3d parallel coordinates. Information Visualization,
5(2):125–136, 2006.

[21] F. Keller, E. Müller, and K. Böhm. HiCS: high
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