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PhC: Multiresolution Visualization and Exploration of Text Corpora
with Parallel Hierarchical Coordinates
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The high-dimensional nature of the textual data complicates the design of visualization tools to support
exploration of large document corpora. In this article, we first argue that the Parallel Coordinates (PC)
technique, which can map multidimensional vectors onto a 2D space in such a way that elements with sim-
ilar values are represented as similar poly-lines or curves in the visualization space, can be used to help
users discern patterns in document collections. The inherent reduction in dimensionality during the map-
ping from multidimensional points to 2D lines, however, may result in visual complications. For instance, the
lines that correspond to clusters of objects that are separate in the multidimensional space may overlap each
other in the 2D space; the resulting increase in the number of crossings would make it hard to distinguish
the individual document clusters. Such crossings of lines and overly dense regions are significant sources of
visual clutter, thus avoiding them may help interpret the visualization. In this article, we note that visual
clutter can be significantly reduced by adjusting the resolution of the individual term coordinates by cluster-
ing the corresponding values. Such reductions in the resolution of the individual term-coordinates, however,
will lead to a certain degree of information loss and thus the appropriate resolution for the term-coordinates
has to be selected carefully. Thus, in this article we propose a controlled clutter reduction approach, called
Parallel hierarchical Coordinates (or PhC), for reducing the visual clutter in PC-based visualizations of text
corpora. We define visual clutter and information loss measures and provide extensive evaluations that
show that the proposed PhC provides significant visual gains (i.e., multiple orders of reductions in visual
clutter) with small information loss during visualization and exploration of document collections.
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1. INTRODUCTION

Today, text is being produced and consumed in a wide variety of applications, including
science, news, e-commerce, blogs, and social networking sites. This flood of data in
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Fig. 1. Examples of existing text collection vizulization schemes: (a) a (term or) tag cloud; (b) tag-flake
visualization proposed in Di Caro et al. [2008].

textual form brings forth a need for effective ways to visualize and analyze large text
collections.

The need for informed navigation within large text collections has been highlighted
in the literature [Bates 1989], but effective solutions are elusive. Most commonly used
text visualization tools, such as term- or tag-clouds (Figure 1) have significant limita-
tions. A tag, whether provided by the user or extracted from the textual content itself,
provides an easy way to search and index blogs and other online media and documents.
For example, most visualizations of tag (or keyword) clouds vary the sizes of the fonts
to differentiate most important tags from those that are less important (Figure 1(a)).
While this helps users quickly observe the most frequent terms in a text collection,
this representation falls short in making the context in which these terms/tags co-
occur apparent. While some existing text collection visualization schemes, such as
tag-flakes [Di Caro et al. 2008] and ContexTour [Lin et al. 2010], attempt to visu-
ally organize the terms extracted from the text collection in a way that highlights
co-occurrences of tags in that collection, or reflects the underlying community clusters,
even these fail to make it possible for a user to understand how the documents are
distributed in the inherently multidimensional space with respect to a set of relevant
terms.

1.1. Visualization of Multidimensional Text Collections Using Parallel Coordinates

Complex, multidimensional data do not fit well into 2D screens. Consequently, a
key challenge in multidimensional data visualization is to map data on 2D graphi-
cal displays in a way that preserves the underlying information and is easy to view
and explore. Existing techniques, including Parallel Coordinates (PC) [Inselberg and
Dimsdale 1990], radial visualization [Hoffman et al. 1997], circle segments [Ankerst
et al. 1996], heat maps [Eisen et al. 1998], and treemaps [Shneiderman 1992], all ad-
dress this challenge differently.

The Parallel Coordinates (PC) technique [Inselberg and Dimsdale 1990], for exam-
ple, is based on the following data mapping strategy: the dimensions of the data (e.g.,
the attributes of a data relation) are represented as (often equispaced) vertical parallel
lines or parallel coordinates. Each distinct value in the domain of a given data dimen-
sion corresponds to a point on the corresponding vertical line. Given a dataset, each
multidimensional data element (e.g., a tuple in a relation) is converted into a poly-
line or a continuous curve which passes through the corresponding value points on the
vertical coordinate lines. By mapping data elements onto the 2D space in such a way
that similar elements are represented as similar poly-lines or curves on this space,
PC is able to help users discern dominant patterns in the multidimensional data. For
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Fig. 2. PC-based visualization of a set of NSF award abstracts matching the query “ocean”; the visualization
is with respect to the three user-selected terms “system”, “model”, and “process”. This parallel coordinates
visualization uses curves instead of poly-lines.

instance, a cluster of objects in the multidimensional space will appear as a dense
cluster of lines that have similar flows in the 2D space.

In this article, we first note that parallel-coordinates-based visualization is suitable
for helping the users observe the distribution of the data within a text collection and
observe the underlying patterns. Figure 2 presents an example. Here, the user is an-
alyzing a collection of NSF award abstracts, within the context of the query keyword
“ocean”. At the right-hand side of the interface, the underlying tag cloud is presented
to the user. In this example, the user has selected three of the terms, “system”, “model”,
and “process” for further analysis and the system mapped the matching award docu-
ments onto the parallel coordinates based on corresponding term frequencies1. This
visualization, for instance, helps the user observe that, within this context, those docu-
ments that contain the term “system” frequently contain the term “model” very rarely.

1.2. Challenge: Visual Clutter in Parallel Coordinates

We, however, also note that, despite its ability to map multidimensional data to 2D
visualization space, PC-based visualization also faces some challenges. In particular,
the reduction in the dimensionality during the mapping of many-dimensional points
to 2D lines often implies visual clutter and this visual clutter is obvious in Figure 2.
Visual clutter in PC occurs because data clusters that are separate in the original
space may end up overlapping with each other in the 2D space, making them harder to
distinguish. These overlaps often appear as crossings of the edges in the visualization
or unnecessarily dense regions of the 2D space (Figure 3). When overly dense, such

1Note that, while in the rest of the article, we simply refer to “terms” and “term frequencies”, in practice
a latent analysis algorithm, such as the standard LSA [Deerwester et al. 1989, 1990] or Latent Dirichlet
Allocation [Song et al. 2009], may be used to identify latent semantic dimensions or significant topics that
can be used as visualization coordinates. In these cases, instead of term frequencies, we would use topical
document relevance (e.g., document vectors’ similarities to the latent semantic dimensions or the selected
topics) as coordinate values.
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Fig. 3. (a) The two clusters that are separable in the original space (b) overlap with each other in PC,
making them harder to distinguish (example taken from Yuan et al. [2009]).
.

Fig. 4. Reducing the visual clutter in the PC visualization in Figure 2.

crossings can create significant visual clutter, rendering the patterns in the data hard
to discern.

In this article, we focus on the reduction of the visual clutter in PC for obtaining
cleaner and easier to interpret visualizations of text collections. Figure 4 shows that
one way to achieve this is to cluster the values along the parallel coordinates: this
helps reduce the visual clutter in Figure 2 and helps highlight the data patterns. In
this visualization, each ellipse corresponds to a cluster of values along a tag-coordinate
and the width of the ellipse corresponds to the amount of curves (i.e., documents) that
fall into that cluster of values. The curves cross the clusters (not at the centers of the
ellipses, but) at the cluster centroids. Note that, in the alternative visualization in
Figure 4, the data patterns are visible with ease and this visualization imposes less
visual load than the one in Figure 2.
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Fig. 5. For each term dimension selected by the user, PhC selects a visualization granularity (or degree of
value clustering).

It is, however, important to note that reducing the detail of the data in the individual
coordinates may lead to certain degree of information loss. In fact, given the same
data while some value clusterings may help improve the visualization, some others
may collapse distinct patterns and make them impossible to distinguish. Thus, which
values are clustered and how much clustering is applied to each dimension have to be
selected carefully.

1.3. Parallel Hierarchical Coordinates (PhC): Controlling the Information Loss
in the Visualization of Large Text Collections

In this article, we present the Parallel hierarchical Coordinates (PhC) approach to
multiresolution visualization of large text corpora. PhC relies on a parallel coordinates
(PC)-based mapping, where user-selected visualization terms are represented as ver-
tical parallel coordinates and each document in the dataset is drawn as a continuous
curve which passes through the corresponding term frequency values on the vertical
coordinate lines. In the resulting visualization, patterns in the document collection
appear as dense regions.

While we argue that PC-based visualizations can be effective in text document col-
lection visualization and analysis, in this article, we also note that naive PC-based
visualizations often suffer significant visual clutter and propose the Parallel hierar-
chical Coordinates (PhC) approach to alleviate this problem.

(1) PhC takes as input a document collection and produces a tag cloud from which the
user selects the set of terms to be used for analysis.

(2) Next, for each term a value clustering hierarchy is created using a hierarchical
value clustering algorithm, such as Ward [1963], applied to the (term frequency)
values corresponding to the coordinate.

(3) Given a value clustering hierarchy for each of the term-coordinates and a user-
provided target resolution, PhC, then uses these value clustering hierarchies to
decide how much detail to maintain for each of the term-coordinates (Figure 5) to
reduce the visual clutter while maintaining as much information as possible.

(4) The user can then navigate over the resulting multiresolution parallel coordinate
space to understand the distribution of the available documents within the term
space. To support this, PhC provides support for OLAP-like navigational operators,
such as drill-down, where the user can navigate from a more general view to a more
detailed view, by stepping down on a given hierarchy, and roll-up, which lets the
user increase the amount of aggregation and clustering by climbing up a hierarchy.
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The article is organized as follows: In Section 2, we discuss the related work. In
Section 3, we describe the utilization of Parallel hierarchical Coordinates (PhC) for vi-
sualizing large text documents. In Section 4, we describe how PhC helps control the
information loss during visual clutter reduction. In this article, in addition to propos-
ing a novel multiresolution PC technique for visual clutter reduction in visualization
of text document collections, we also present novel visual clutter and information loss
measures for PC-based visualizations (Section 5). Evaluation results, presented in Sec-
tions 6, show that PhC provides significant visual gains (i.e., clutter reduction) with
small information loss.

2. RELATED WORK

In this section, we present an overview of the related work in the areas of document
collection visualization as well as discuss prior work on parallel coordinates.

2.1. Related Work on Document Collection Visualization

A critical aspect of the knowledge discovery process is the presentation layer, that
is, information visualization and browsing. Effective and interactive designs can em-
power users, on the other hand, an ineffective design may cause the user be lost in a
sea of information.

The image hosting Web site Flickr2 was one of the first systems that used tag clouds
for visualizing lists of words, associated to a given media object, where word impor-
tance is represented with font sizes. Hassan-Montero and Herrero-Solana [2006a]
propose a graphical visualization of tag clouds, where the tags are selected on the ba-
sis of their frequency of use. Relationships among tags are defined in terms of their
similarity, quantified by means of the Jaccard coefficient. K-means clustering is then
applied on the tag similarity matrix, with an a priori chosen number of clusters and
fixed number of selected relevant tags. Hassan-Montero and Herrero-Solana [2006b]
further the work in Hassan-Montero and Herrero-Solana [2006a] by applying Multi
Dimensional Scaling, MDS, (using Pearson’s correlation as the tag similarity function)
to create a bidimensional space, which is then visualized through a fish-eye system. We
note, however, that while preserving distances, MDS does not preserve the energies of
the input tags. Similarly, using only two dimensions can be overly lossy. Research on
effective use of 2D spaces for multidimensional data visualization focuses on careful
selection of the relevant dimensions [Seo and Shneiderman 2004] and organizing data
in hierarchical visualization structures, such as TreeMaps, along the relevant dimen-
sions, and mapping these two 2D spaces [Chintalapani et al. 2004].

PhaseTwo’s goal is to create visually pleasant tag clouds, by presenting tags in the
form of seemingly random collections of circles with varying sizes3: the size of the circle
denotes its frequency. Each tag circle is first placed in the center of the cloud and then
fired from the center along a random angle. The tag circle stops when it collides with
another circle. This visualization scheme intentionally randomizes the placement of
the tags with the hope of projecting a more pleasant (if not highly informative) feeling.

In Fortuna et al. [2005] the authors describe a system to visualize the semantics
contained in a textual corpus. They rely on a Latent Semantic Analysis technique
to extract the information about the principal dimensions emerging from the text
by means of Singular Value Decomposition (SVD) applied on the term-document fre-
quency matrix [Eckart and Young 1936]. They automatize the choice of the concept
space dimensions, by choosing the minimum k such that

∑k
i=1 Si∑n
i=1 Si

> θ , where Si are the

2http://www.flickr.com/
3http://phasetwo.org/post/a-better-tag-cloud.html
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singular values on the diagonal of the singular value matrix, and θ is a system pa-
rameter threshold, set for example to 0.5. After identifying the relevant dimensions,
in Fortuna et al. [2005], the authors apply MultiDimensional Scaling (MDS) [Cox and
Cox 2001] to reduce the dimensionality all the way down to two dimensions, to allow
the visualization on the 2D plane.

In Don et al. [2007] the authors address the problem of making text mining results
more comprehensible to humanities scholars, journalists, intelligence analysts, and
other researchers, using the FeatureLens system, that visualizes a text collection at
several levels of granularity and enables users to explore interesting text patterns.
The implementation has panels in which different document features could be focused
and analysed. First of all, the authors focus on frequent itemsets of n-grams, so they
capture the repetition of exact or similar expressions in the collection. Users can find
meaningful co-occurrences of text patterns by visualizing them within and across doc-
uments in the collection. The system allows users to identify the temporal evolution of
usage such as increasing, decreasing, or sudden appearance of text patterns. In order
to provide repeated expressions that are exact repetitions as well as repetitions with
slight variations, in Don et al. [2007] the authors propose to use frequent closed item-
sets of n-grams, according to a specific definition of pattern: a set of n-grams X is a
pattern if there exists no set of n-grams X ’ such that X ’ is a proper superset of X , and
every paragraph containing X also contains X ’. Don et al. [2007] also provide tooltips
that show the paragraphs where some selected pattern occurs, making explicit their
context of usage.

2.2. Related Work on Parallel Coordinates

As we mentioned in the Introduction, PC-based visualization faces visual clutter due to
dimensionality reduction. In this section, we provide an overview of the prior attempts
to tackle this challenge.

2.2.1. Dimension Ordering. In Peng et al. [2004], Peng et al. introduce a visual clutter
measure for PC. They define visual clutter as the ratio of outliers in the visualization
and recognize that the number of outliers can be reduced by careful ordering of the
dimensions on the parallel coordinates visualization. Yang et al. [2003] also recognize
that careful clustering and ordering of the dimensions (based on similarities) can help
improve visualization effectiveness. In general, the optimal ordering of the dimensions
is an NP-complete problem [Ankerst et al. 1998]. In this article, we assume that the
appropriate order of dimensions is selected in advance, either by the user or by a
dimension-ordering algorithm.

2.2.2. Data Filtering. An alternative approach for reducing visual clutter is to re-
duce the data themselves. Zhou et al. [2009] propose a splatting-based noise removal
method which eliminates outlier poly-lines. The algorithm randomly selects a set of
poly-lines and augments its and its neighbors intensities. Since outliers are not neigh-
bors to many other poly-lines, the intensities of the outliers gradually become rela-
tively lower and they disappear from the visualization. Artero et al. [2004] use data
frequency for selecting the data to be presented. Instead of applying the reduction on
the entire data visualization, Ellis and Dix [2006] propose a sampling lens, a movable
region within which the data are presented in a down-sampled or reduced manner.

2.2.3. Data Clustering. Visual clutter can also be reduced by clustering the poly-lines
as opposed to filtering some of them out. Siirtola [2000] proposes a poly-line averaging
technique where a set of poly-lines, selected by the user, are represented by using the
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corresponding average poly-line. In the visual abstraction scheme presented in Novotn
[2004], clusters of poly-lines are visualized using their bounding polygons.

In Cui et al. [2006], the authors introduced measures of quality for sampling and
clustering, in order to reduce the data to be visualized.

Edge bundles [Holten 2006] and Wavelets [Wong and Bergeron 1996] visualize
datasets that contain hierarchical information or adjacency relations for reducing vi-
sual clutter.

In Fua et al. [1999a, 1999b], all the poly-lines are displayed; however, the elements
belonging to different data clusters are differently colored to help the user discern
them better. The colors are selected in a way that reflects the similarities and distances
between the clusters. Then, the authors select the data clusters using a hierarchical
clustering scheme and thus enable a multiresolutional view of the data (i.e., the user
can select how much detail has to be preserved in the visualization).

In this article, we also consider clustering of the data. However, instead of using
multidimensional clustering techniques that ignore the impact of the data clustering
on the projections of the data on the given data dimensions, we primarily focus on
controlling the reductions of the resolutions of the individual data dimensions when
the data is clustered.

2.2.4. Other Visualization Enhancements. Graham and Kennedy [2003] introduce var-
ious refinements to the PC-based visualization. One of these enhancements is to
replace the poly-lines with smooth B-spline curves (as we do in this article4). The ad-
vantage of using B-spline curves is that poly-lines that would partially overlap in space
are differentiated from each other when plotted as smooth curves and this allows dis-
cerning individual data from each other even if they have shared values [Bartels et al.
1995]. This reduces ambiguity. As a downside, however, this increases the number
of distinct curves on the visualization space, potentially worsening the visual clutter.
To reduce clutter, Zhou et al. [2008] control the curvatures in a way that maximizes
parallelism of related data curves. Wong and Bergeron [1997] augment the PC with
a low-dimensional overview of the data obtained using principal component analysis.
While not reducing the visual clutter, this often helps the user locate and track data
clusters more effectively.

3. PHC FOR MULTIRESOLUTION VISUALIZATION OF LARGE TEXT
DOCUMENT COLLECTIONS

As we mentioned in the Introduction, in this article, we present the Parallel hierar-
chical Coordinates (PhC) technique for visually analyzing large document collections.
Unlike traditional tag- or term-clouds, PhC aims to help the user observe not only
the frequently occurring terms, but the underlying patterns within this term space
(Figure 6). In order to map multidimensional document data on 2D graphical displays
in a way that preserves the underlying information and is easy to view and explore,
PhC relies on a Parallel Coordinates (PC)-based mapping, where user-selected visu-
alization terms are represented as vertical parallel coordinates and each document in
the dataset is drawn as a continuous curve across these coordinate lines. In order to
further help the user, PhC eliminates visual clutter relying on value clustering hier-
archies obtained by analyzing the input set of documents. Based on the user input,
the system suggests a clutter reduction strategy in a way that maintains as much in-
formation as possible; the user can then use OLAP-like navigational operators, such
as drill-down and roll-up, to increase or decrease the hierarchical resolution to better
observe data patterns.

4We used cubic B-splines.
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Fig. 6. Unlike traditional tag clouds, PhC helps visually analyze the given document collection for relation-
ships between the tags.

In Section 4, we will discuss how PhC minimizes information loss during visual
clutter reduction. Before that, however, in this section, we present an example user
interaction sequence which describes how PhC helps the user visually analyze a docu-
ment collection.

— Step 1: Data selection. In the first step, the user selects a data source and further
focuses the analysis by providing a filter condition5.
In our example shown in Figure 7(a), the user has selected the “Katrina” dataset and
provided “hurricane” as the filter condition; the system then created and presented
the user a term-cloud consisting of frequent terms in the documents that match this
filter condition.

— Step 2: Coordinate selection. Given the term-cloud, the user can select any of these
terms for analysis or can provide additional terms that do not occur in this term-
cloud. In Figure 7(b), the user has selected the terms “government” and “federal”
and the system created a PC visualization with two parallel coordinates.
Here, each document is represented as a curve that crosses each term coordinate at
a point corresponding to the term’s frequency in the document (in order to help the
visualization, by default only the relevant frequency range is visualized, though the
user can optionally select any frequency range for visualization).

— Step 3: Coordinate selection (cont.). In Figure 7(c), the user has selected two more
terms for inclusion in the analysis: “city” and “state”. As a result, the PC visualiza-
tion now contains four parallel coordinates.

— Step 4: Coordinate selection (cont.). The selection can be very large, even though
the displayed information becomes difficult to manage. In Figure 7(d), the user has
selected an additional three terms for a total of seven terms.

5In this example, we are using a set of 750 hurricane Katrina-related news articles, also used in Di Caro
et al. [2008]: the event has a multitude of, now well understood, facets, including geographic, humanitarian,
economic, and political (local, regional, and federal) aspects.
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Fig. 7. First user interaction steps: selection of parallel coordinates.

At this point, the user can continue the iteration with the system using several
available functionalities.

— Data reduction through “skyline” selection. At this point, the user may be uncom-
fortable with the amount of curves in the visualization and may want to reduce the
clutter.
One way to achieve this is to keep only those documents that are not dominated by
any others in the dataset. This set is also known as the skyline set [Borzsonyi et al.
2001].
— No document in the skyline has a higher value than any other one in the skyline

set with respect to all the dimensions of the space, and
— no document in the dataset is in the skyline if there is at least one other document

that has a higher score in all visualization dimensions.
Intuitively, for text exploration this implies that the skyline set contains documents
that are the best representatives of different weight combinations. For example, if
the document with weights d1 = < 0.8, 0.6, 0.1 > is in the skyline, then the docu-
ments d2 = < 0.7, 0.6, 0.1 > or d3 = < 0.3, 0.3, 0.1 > cannot be in the skyline. The
document d4 = < 0.3, 0.3, 0.4 > on the other represents a document which is rel-
atively more dominant in terms of the 3rd dimension in contrast to the first text
document, d1, and therefore can be in the skyline along with the initial document.
Figure 8(a) shows the skyline set of the documents in the dataset selected by the
user (see Figure 7(c)).

— Data reduction through coordinate filtering. Alternatively, the user can reduce the
documents in the visualization shown in Figure 7(c) by putting a lower and/or upper

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 2, Article 22, Publication date: February 2012.



PhC: Multiresolution Visualization and Exploration of Text Corpora 22:11

Fig. 8. Options for data reduction: skyline reduction and dimension filtering.

bound on the frequency values of the coordinates of the visualization space. In
Figure 8(b), for example, the user instructed the system to eliminate any documents
that have a 0.0 value along any of the visualization dimensions (i.e., missing any of
the four visualization terms).

— Reduction of the visualization resolution by document clustering (k = 2). Another
way to reduce the clutter in the visualization in Figure 7(c) is to cluster similar
documents together. In Figure 9(a), the user instructs PhC to reduce the amount
of details in Figure 7(c) by ensuring that each curve in the display corresponds
to at least two documents (the user achieves this by bringing the sliding bar wid-
get named “K” to 2). The system selects a value clustering strategy that achieves
this effect with the minimal amount of information loss (see Section 4 for more de-
tails). As can be seen in the size map at the lower right corner of the interface in
Figure 9(a), the system achieves this by creating document clusters of varying sizes,
the smallest having 2 and the largest having 26 documents. In the main window,
each of these document clusters are represented using a single curve and the shade
of the curve is used to denote the size of the corresponding cluster (the darker the
curve, the larger the corresponding document cluster).
Note that, in order to achieve the target document clustering, PhC needed to cluster
some of the values along the coordinates. The visualization interface shows the user
the clustering strategy selected by the system by marking each value cluster using
an ellipse spanning the corresponding value range. The document cluster curves
cross the value clusters at the cluster centroids and the width of each ellipse rep-
resents the number of document clusters passing through the corresponding value
cluster.

— Selective detail visualization. At any point in time, the user can peek into any of
the resulting value clusters to see how the individual curves are distributed within
the value cluster. Figure 9(b) shows an example where the user selected the term
coordinate “government” and instructed the system to display how precisely the
document cluster curves are distributed inside the corresponding value cluster.

— Curve tracing. The user can select and remove any of the uninteresting document
clusters from visualization or can focus onto any of the interesting ones. For exam-
ple, as shown in Figure 9(c), at any point, the user can click onto any interesting
curve and ask the system to separate it from the crowd for better visualization.
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Fig. 9. Options of interaction with PhC.
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Fig. 10. Roll-up/Drill-down on PhC, and elimination of outliers.

— Document visualization. The user can also instruct the system to provide more
details about the selected document cluster; for example, the system can compute
and return a new term-cloud for this document cluster or simply open the documents
in the cluster for the user’s browsing (Figure 9(d)).

— Curve group tracing. Alternatively, as shown in Figure 9(e), the user can select a
set of document cluster curves to be separated from the crowd for better comparison.

— Curve tracing by size map. The user can also highlight document cluster curves
by interacting with the document cluster size map at the bottom right corner. In
Figure 9(f ), the user clicked on the dots corresponding to clusters with 16 documents
and the corresponding curves are highlighted to the user by the system.

— Roll-up. Figure 10(a) shows the roll-up operation. Here, the user selected the “city”
coordinate and instructed the system to climb up on the corresponding hierarchy. As
a result, the three value clusters that PhC has selected for visualization are further
clustered into two value clusters, corresponding to the clusters at a higher level of
the value clustering hierarchy.

— Drill-down. In contrast, in Figures10(b) and (c), the user drills-down on the “city” co-
ordinate, thus obtaining smaller and smaller value clusters. In fact, in Figure10(c),
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the user has drilled-down in the hierarchy all the way to the level of individual data
values: in the figure, there are no value clusters on the “city” coordinate.

— Elimination of outliers. Note that not all curves on Figure10(c) are of the same color:
while some curves are shades of gray as before, there are also some curves that
are reddish in color. These reddish curves are those that violate the user-provided
document clustering lower bound constraint “k = 2”, which requires that all curves
correspond to at least 2 documents in the document base. When the user drills-down
along a coordinate, she is increasing the resolution along that coordinate and this
may lead to the dissolution of some of the document clusters originally selected by
PhC. This may consequently result in outlier documents that cannot be clustered
with the rest of the documents at the selected resolution.
In Figure10(d), the user instructs the system to eliminate these outliers from the
visualization, keeping in the visualization only those curves that correspond to doc-
ument clusters with at least two documents in them.

— Reducing the resolution of the visualization by increasing the lower bound of the
document cluster sizes. In Figures 11(a) to (c), the user varies the value of k (i.e., the
lower bound of the document cluster sizes) from 2 to 6. As a result of the reduction
in the visualization resolution, the numbers of document cluster curves as well as
the value clusters along the visualization coordinates drop.

— Decreasing the upper bound of the document cluster sizes. The user can also place an
upper bound on the number of documents in each document cluster created by PhC
and displayed as a curve on the screen. Noticing from the “size map” corresponding
to k = 2 (lower right corner in Figure 11(a)) that there is one curve representing
26 documents, in Figure 11(d) the user instructs the system (using the sliding bar
widget marked as “W”) to find an alternative clustering strategy where there are no
document cluster curves representing more than 20 documents.
As a result, the system selects an alternative clustering strategy which repartitions
the values along the “government”, “city”, and “state” coordinates into finer value
clusters and identifies and plots new document cluster curves. The new “size map”
on the lower right corner of the interface in Figure 11(d) shows that, now, the maxi-
mum document cluster size is 18.
One consequence of placing an upper bound on the sizes of document clusters along
with a lower bound is that (as later explained in Section 4) this may result in clus-
ters that have less documents than the user-selected lower bound (k = 2 in this
example). In our example, the lower and upper bounds selected for the document
cluster sizes by the user necessitate ∼ 60% of the documents being identified as out-
liers that cannot be clustered with the rest. This is communicated to the user with
the slider bar at the lowest left corner of the interface.

— Increasing the maximum suppression rate. Alternatively, instead of providing an
upper bound on the document cluster sizes, the user can allow the system to mark
up to a specific portion of the documents as outliers. In Figure 11(e), the user allows
the system to consider up to 20% of the documents in the dataset as outliers. This
results in a clustering strategy which maintains more details in the visualization
while eliminating some of the documents from the visualization as outliers (compare
the value clusters along the dimensions in Figures 11(a) and (e)).

— Changing the visualization coordinates. At any point, the user can drop any
of the current visualization coordinates and/or add one or more new terms. In
Figure 12(a), we see that the user has dropped the coordinate “government” from
the visualization and has added the new coordinate, “president”. After this change of
coordinate, the user can continue exploring the patterns in the document set along
this new set of dimensions.
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Fig. 11. Use of parameters k and w.
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Fig. 12. Steps 21 through 24: use of hierarchical coordinates.

— “Normalized” view. In Figure 12(b), the user has decided to investigate the docu-
ments in a normalized document vector space, instead of in the original document
vector space. In other words, each document vector �v in the 4D visualization space
is normalized into �v′ = �v

|�v| . Consequently, any two document curves that have simi-
lar keyword compositions, but of are different length (such as 〈0.4, 0.2, 0.1, 0.3〉 and
〈0.2, 0.1, 0.05, 0.15〉) are now overlapping in the visualization space and can easily
be clustered with each other. Note that this implies that the document clusters ob-
tained by varying the resolution of the visualization space (Figure 12(c) and (d)) will
likely contain documents that are similar to each other in terms of relative keyword
composition (i.e., in terms of cosine similarity).

Note that in the preceding example sequence, each parallel coordinate correspond to
a single term. In general, however, multiple terms may be grouped by the user into
a combined concept and assigned to a visualization coordinate. Alternatively, as
mentioned earlier, a latent analysis algorithm, such as the standard LSA Deerwester
[1989, 1990] or Latent Dirichlet Allocation [Song et al. 2009], may be used to identify
significant term vectors or topics to be visualized as coordinates.
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4. MINIMIZATION OF THE LOSS DURING CLUTTER REDUCTION IN PHC

As we discussed in Section 2.2, there have been various attempts to leverage clus-
tering for visual clutter reduction in parallel-coordinates-based visualizations. It is
important to note that tackling visual clutter through filtering or clustering may lead
to information loss and what is clustered and how much clustering has been used
have to be decided carefully. In fact, a common deficiency of the existing approaches,
such as Fua et al. [1999a], is that they focus on clustering of the dataset, ignoring the
characteristics of the individual data dimensions/coordinates. In this article, we note
that starting from the (hierarchical) clusterings of the values along the individual co-
ordinates can help better control the amount of loss in resolution along the individual
dimensions of the data.

Thus, to tackle visual clutter, PhC relies on hierarchical clusterings of the values
along the visualization coordinates (Figure 5). During the user’s exploration of the
document collection, PhC often decides for each dimension the most appropriate res-
olution based on a user-provided target document clustering rate (see Figures 4, 5,
and 9(a)). As described in the earlier section, the user can then interact with the sys-
tem to selectively roll-up or drill-down along the hierarchies corresponding to different
visualization coordinates to explore the patterns in the document set.

In the rest of this section, we describe how the Parallel hierarchical Coordinates
(PhC) controls the degree of value and document clustering in such a way that the
information loss is minimized.

4.1. Value-Clustering Hierarchies

Let A be a user-selected term (or a “concept” consisting of a set of terms). The cor-
responding value clustering hierarchy (identified using a hierarchical clustering algo-
rithm) is a tree HA(V, E), where

— each v = (nodeid : value) ∈ V is a node in the tree and v.value is either the weight
of a document in the dataset for A or is the value range using the value clustering
algorithm, and

— e = vi → v j ∈ E is a directed edge denoting that the value encoded by the node v j
can be clustered under the value encoded by the node vi.

Given a value hierarchy HA , a tree node vi is a clustering of a tree node v j, denoted by
v j ≺ vi, if there exists a path p = vi ↪→ v j in H. For example, if we consider ranges of
values between 0.0 and 1.0, [0.2, 0.3) ≺ [0.0, 0.4) and [0.0, 0.4) ≺ [0.0, 0.5).

Note that these value-clustering hierarchies are computed for each of the user-
selected visualization coordinates (i.e., terms) before the PhC visualization for the
given set it created.

4.2. k -Clustering of Documents

In the rest of this section, we present the algorithms PhC uses for reducing the visual
clutter in PC, given a target document clustering resolution. The idea is to cluster
the values in each dimension in a controlled manner using the given value-clustering
hierarchies, in such a way that each poly-line or curve in the resulting PC visualization
will group at least k individual documents in the document collection. We refer to this
as the k-clustering of the documents.

Intuitively, k is the parameter controlling the degree of resolution of the PC visual-
ization. Note that a given document set can be k-clustered in many different ways. For
example, a simple (but obviously unacceptable) k-clustering strategy would be using
a single poly-line to represent the whole document collection. The challenge is thus
to identify a value clustering strategy (i.e., a level in the corresponding hierarchy for
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each term) in a way that achieves the k-clustering goal, yet loses as little information
as possible (see Section 5 for more details on information-loss measures).

To obtain good k-clusterings of the data, we build on the privacy-preserving data
publication approaches presented in the literature [LeFevre et al. 2005; Li and Li 2007;
Machanavajjhala et al. 2007; Samarati and Sweeney 1998]. Given a table to be pub-
lished consisting of sensitive attributes and their values, the goal in these approaches
is to limit the amount of data leaked by replacing the specific entries in the database
table with more general cluster labels. In k-anonymization6 problems, for example, the
acceptable degree of hiding is defined as the generalization in which each row in the
published table is indistinguishable from at least k − 1 other rows [Ciriani et al. 2007]
This k-anonymization approach eliminates the possibility of linkage attacks by ensur-
ing that, in the disseminated table, each value combination of attributes is matched
to k others. To achieve this, these techniques rely on a priori knowledge about ac-
ceptable value generalizations. Thus, most of these algorithms assume that there is
a taxonomy associated to each sensitive attribute and that this taxonomy can serve
as the value-clustering hierarchy for that attribute. Given that there may be many
publishable tables, each providing the same level (k) of row hiding, most approaches
aim to locate a publishable table that also preserves as much information in the orig-
inal table as possible to make sure that the published data table will be of use to its
recipient after its generalization. In a low-resolution representation of the data, an
internal node of the hierarchy can be used to cluster all the values (i.e., leaves). On the
other hand, more general cluster labels will also cause a higher degree of information
loss; thus, among all possible clusterings that put each tuple with k − 1 other ones,
Samarati and Sweeney [1998] and many others aim to find those that require minimal
generalizations.

Cell generalization schemes [Aggarwal et al. 2005] treat each cell in the data
table independently. Thus, different cells for the same attribute (even if they have the
same values) may be generalized in a different way. This provides significant flexibility
in anonymization, while the problem remains extremely hard (NP-hard [Meyerson and
Williams 2004]) and only approximation algorithms are applicable under realistic us-
age scenarios [Aggarwal et al. 2005]. Attribute generalization schemes [LeFevre et al.
2005; Samarati 2001] treat all values for a given attribute collectively; that is, all val-
ues are generalized using the same unique domain generalization strategy. While the
problem remains NP-hard [Meyerson and Williams 2004] (in the number of attributes),
this approach saves a significant amount of time in processing and may eliminate the
need for using approximation solutions, since it does not need to consider the individ-
ual values. Most of these schemes, such as Samarati’s original algorithm [Samarati
2001], however, rely on the fact that, for a given attribute, applicable generalizations
can be put into a total order of information loss; that is, the higher you go in the hi-
erarchy, the more you lose information. More specifically, if there is a generalization
at depth d that puts all tuples into clusters of size k, then any other generalization at
level d′ ≤ d will also group all tuples into clusters of size at least k, but it will have
more loss; conversely, if one can establish that there is no generalization at level d that
is a k-clustering, then there is no other clustering of level d′ > d that can cluster all
tuples into clusters of size at least k. LeFevre et al. [2005] leverages this to develop
an algorithm which achieves attribute-based k-anonymization one attribute at a time,
while pruning unproductive attribute generalization strategies. Samarati [2001], on

6Note that k-anonymization is not the only criterion used in privacy-preserving data publication.
Machanavajjhala et al. [2007] and Li and Li [2007] present l-diversity and t-closeness criteria, respectively.
However, for the goals of our article, the k-clustering property of the k-anonymization approaches provides
the best match.
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the other hand, leverages this to develop a binary search scheme to efficiently identify
the most specific generalization which guarantees clusters of size at least k: Let D be
a dataset and G A = A1, ..., Am, be the set of generalization attributes. For each at-
tribute in Ai, the algorithm takes a value-clustering hierarchy (a taxonomy, Ti) which
describes the generalization/specialization relationship between the possible values in
the domain of the attribute Ai. Let the height of Ti be hi

(1) The algorithm first computes the maximum amount of information loss possible:
this happens when all m attributes of the table are generalized all the way to the
root; that is, the maximum amount of generalization is H = h1 + h2 + . . . + hm.

(2) Max = H and Min = 0 (0 corresponds to the original table, where none of the values
has been generalized).

(3) The algorithm then considers all possible generalizations that involve a total of
L = � Max−Min

2 � steps.
— If a k-clustering generalization is found at this level, then any k-clustering gen-

eralizations that requires more generalizations will have extra information loss;
however, there may be k-clustering solutions that require less generalizations.
Therefore, the algorithm next considers the range Max′ = L − 1 and Min′ = Min.

— On the other hand, if a k-clustering generalization is not found at this level, then
we can be sure that there is no generalization at any level below L. However,
there may still be a k-clustering solution that requires more generalization steps
than L. Therefore, the algorithm next considers the range Max′ = Max and
Min′ = L + 1.

(4) Step 3 is repeated is repeated until Max = Min and the k-clustering with the small-
est amount of generalization found in the process is returned.

In this article, we note that a similar strategy can be used for reducing the visual clut-
ter in parallel coordinates-based visualization of text documents. In particular, given
a document set and a value-clustering hierarchy for each of the terms selected by the
user for visualization, we can locate a k-(document)-clustering strategy that requires
the least amount of value generalizations7. This way, the algorithm would identify
the appropriate resolution for each dimension that collectively minimizes the informa-
tion loss while ensuring that each document cluster will contain at least k documents.
Figure 9(a) shows the application of k-clustering applied to the PC visualization of
document sets.

The computational complexity of the PhC visualization is determined by the under-
lying k-clustering process. In our implementation, we use the k-clustering strategy
presented in Ciriani et al. [2007], which performs binary search on the levels of the
input hierarchy. The k-clustering problem and the specific algorithm [Ciriani et al.
2007] we use are known to be exponential in the number of attributes (i.e., the visu-
alization dimensions), but only quadratic in the number of data entries. Moreover as
k increases, the complexity of the problem tends to drop as it is easier to find clusters
that satisfy the given clustering target. Since the number of visualization attributes
are often small and since the quadratic processing of the data entries (to compute a
so-called pairwise distance table can be done offline as a preprocessing step), in prac-
tice the runtime cost of PhC is not a major obstacle. When the number of visualization
attributes is large, the clusterings may need to be precomputed and cached to support

7Note that, while we do not explicitly consider this in this article, we can also associate a degree of infor-
mation loss to each internal node in the hierarchy (for example, representing the span of the corresponding
range; e.g., the range [0.0, 0.4) is twice less precise than the range [0.0, 0.2)) and thus minimize the total
amount of information loss measures not in terms of generalization steps, but in terms of this information
loss measure.
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interactive exploration. PhC also leverages caching of k-clustering solutions to ensure
that once the clustering is computed, it can be reused throughout the user interaction
process.

4.3. Outlier Suppression and [k,w ]-Clustering of Documents

One difficulty with k-clustering is that clustering the outlier documents with the rest of
the document to obtain the lower bound cluster size, k, may necessitate high degrees of
value clusterings, which in turn would cause document clusters much larger than the
desired lower bound, k. This explains the large document cluster with 26 documents
in Figure 9(a). Given such large value or document clusters, the user can either drill-
down along a selected dimension explicitly or ask the system to try to suppress the
outliers from the visualization.

4.3.1. [k, w]-Clustering of Documents. With the basic k-clustering scheme, the user spec-
ifies the lower bound clustering constraint k, but no constraints are imposed on the
maximum level of clustering. This means that in the visualization we can have poly-
lines or curves that correspond to  k data elements; more importantly, the number of
elements represented by different curves in the visualization may differ significantly
from each other. While this variation in cluster sizes may be communicated to the user
with visual cues, such as line thickness, PhC also allows the user to place an upper
bound constraint on the number of elements captured by each curve. We refer to this
as the [k, w]-clustering of the data, where k represents the lower bound and w is the
upper bound of the clustering rate.

One difficulty with placing an upper bound on the cluster sizes is that there may
be situations in which there are no generalizations that can satisfy both lower bound
and upper bound constraints. This situation occurs especially when the document set
has outliers: Let d be an outlier document, with one or more of the dimension weights
significantly different than the rest. Clustering the document d with k – 1 others may
require increasing the ranges of some of the value clusters so much that, inadvertently,
many other documents may fall into this range resulting in a document cluster with
a size  k. Therefore, given k and w, if no appropriate [k, w]-clustering is found,
then PhC identifies the minimum number of outlier documents whose suppression will
ensure [k, w]-clustering of the remaining documents. This is achieved by, if needed,
varying the degree of suppression using binary search until a [k, w]-clustering is found.

To search for suppressions, we build on a variation of the k-anonymization problem
where the user is allowed to specify the maximum number (maxsup) of suppressions
allowed when an appropriate generalization cannot be found. When the maxsup is
specified by the user, the step 3 of the algorithm in the previous step is modified in
such a way that the system searches not for k-clusterings of the table, but k-clusterings
which have at most maxsup suppressions. Samarati [2001], for example, presents a dy-
namic programming-based algorithm that can verify if a given generalization strategy
provides a k-clustering with at most maxsup submissions or not in quadratic time.

Given a [k, w]-clustering target, PhC first locates a k-clustering and checks the size
of the maximum cluster size, if the maximum cluster size is ≤ w, then this solution is
returned. If the maximum cluster size is greater than w, then the algorithm searches
for a k-clustering using binary search, where each iteration a different maxsup rate is
considered. Starting from � N

2 �, where n is the number of documents, the algorithm
considers different suppression rates, each time halving the range and decreasing the
target suppression rate when a [k, w]-clustering is located and increasing the suppres-
sion rate when a [k, w]-clustering is not found. Note that this scheme differs from
naive binary search in that the algorithm does not stop immediately when a [k, w]-
clustering is identified; instead it tries to see whether there exist [k, w]-clusterings
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Fig. 13. The cluster size map in (a) shows that one of the document clusters in the dataset is much larger
than the rest; in the corresponding cluster generalization map shown in (b), the same cluster is seen to have
low average loss. This implies that this cluster represents a dominant pattern (i.e., the large number of
documents with low loss in value clustering).

with lower suppression rates. Overall, the algorithm continues O(logN) iterations,
where N is the size of the document set or until the [k, w]-clusterings converge.

Figure 11(d) in the previous section presents an example [2, 20]-clustering, which
results in a maximum document cluster size of 18. Note that, in addition to reducing
the size of the largest document cluster, this also helps further partition the values
along the visualization dimensions, resulting in more detailed visualizations. Note
also that to achieve the desired lower and upper bounds, the algorithm has selected a
suppression rate of 60% of the documents. Of course, suppression does not mean that
these documents are lost, but only that they are visualized differently (as outliers)
than the rest: suppressed documents can either be hidden from the visualization or, as
shown in Figure10(c) , they can optionally be included in the visualization in red.

4.3.2. Direct Selection of Suppression Rate. Alternatively, PhC can take the acceptable
suppression rate, maxsupp, directly as an input from the user. Given maxsup > 0,
the algorithm would identify a value-clustering strategy which would require as little
clustering as possible by suppressing up to maxsup many documents.

4.4. Document Cluster Sizes and Loss in Precision

As described in this section, PhC allows the user to explore the data at different reso-
lutions, specified by a clustering lower bound k and an upper bound w (as well as the
outlier ratio suppr). Within these bounds, the number of documents included in differ-
ent document clusters may differ from each other. Similarly, the number of general-
ization steps required for obtaining document clusters may also vary from cluster to
cluster. Thus, PhC also provides visualization mechanisms to help the user isolate in-
dividual document clusters represented based on their sizes/generalizations and study
the relationships between these two cluster properties.

One of these mechanisms is a tool called document cluster size map which allows
the user to explore document clusters based on their sizes. The cluster size map can
be seen at the lower right corner of the user interfaces in Figure 13. For example,
in Figure 13(a), the sizes of the document clusters range from 2 to 53 documents. A
related exploration tool PhC provides is the document cluster generalization (or loss)
map, where each document cluster is visualized in terms of the number of value gen-
eralization steps required to obtain this cluster (i.e, the amount of loss in precision).

Figure 13(a) presents an example where one cluster has significantly more docu-
ments than the others; as mentioned earlier, this may be due to an outlier or may
simply be because there are a lot of entries that have similar values. If the cluster
is large and the corresponding loss is also high, this may be due to an outlier in the
document set which may call for a high degree of clustering. In contrast, a cluster
with a lot of documents, but a low degree of loss would indicate a strong pattern in the
dataset (as is the case in the example in Figure 13).
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Fig. 14. (a) The visual clutter due to line density (b) can be reduced through document clustering.

4.5. Selection of Parameters k and w

For an unknown text document collection without any a priori statistics, there is no
principled way to pick the very initial k/w values. However, the visualization interface
provides exploration widgets and so “cluster size” and “cluster generalization” maps to
help the user change k and w values in a way that maintains sufficient detail, with
the least visual clutter. While different users can use these tools differently and differ-
ent applications may put different emphasis on patterns versus outliers, the common
approach is to vary k values until sufficient detail versus clutter trade-off is achieved.
If during the process, one recognizes (using the “cluster size” map) that some of the
clusters remain very large clusters and this makes it hard to investigate the collec-
tion, such clusters are further partitioned by putting a tighter limit on the minimum
document cluster size w.

5. MEASURING VISUAL CLUTTER AND LOSS

As we stated in the Introduction, the goal of PhC is to reduce visual clutter, while
preventing information loss as much as possible. In this section, we formalize visual
clutter and loss and present alternative quantifiable measures for assessing different
PC-based visualization strategies.

5.1. Visual Clutter Measures

In Yang et al. [2003], Yang et al. define visual clutter in terms of the number of outliers
in the visualization. While this measure is attractive when focusing solely on outliers,
in this article we focus on two alternative sources of visual clutter; namely, (a) the line
density and (b) crossings of poly-lines or curves in the visualization.

5.1.1. Clutter Due to Line Density. In Tufte [2001], Tufte argues that when visualiz-
ing information, for each active point in the screen, there is a visual cost associated.
Therefore, the number of active points/pixels should be proportional to the amount of
information being represented in the visualization. Thus, given two visualizations that
communicate the same information, the one with less active points/pixels is preferable.
Based on this intuition, the first measure we define for visual clutter is the number
of poly-lines or curves in the visualization. That is, among two PC visualizations that
are able to communicate the same patterns (e.g. clusters and outliers) to the user, the
one which uses the smaller number of lines or curves is more desirable (Figure 14).

5.1.2. Clutter Due to Line Crossings. Large numbers of line crossings can render pat-
terns in the data hard to discern. Consider, for example, two clusters in Figure 3 that
are separate in the original space; due to dimensionality reduction, the corresponding
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Fig. 15. (a) The clusters that are hard to discern due to too many line crossings (b) can also be made more
apparent by clustering documents and thus reducing the number of crossings.

poly-lines or curves in the PC visualization may share the same visualization space
resulting in large numbers of crossings. As a result, especially when the number of
distinct clusters is large, these patterns may become increasingly harder to discern
(Figure 15). Therefore, our second visual clutter measure focuses on the line crossings
(excluding the crossings on the coordinate-lines due to value sharing). In particular,
we use two different line-crossings-based measures.

— Total number of crossings. This simply counts the total number of crossings in the
visualization. Since in the curve-based PC, a pair of curves may cross each other
multiple times, we consider both total and unique-total measures (the latter includ-
ing each crossing curve pair in the total only once).

— Document cluster confusion. Two document clusters would be easier to discern if
their curves did not intersect in the visualization space. Therefore, given a docu-
ment set with m a priori known document clusters, C =< c1, c2, ..., cm >, we define
the corresponding cluster confusion degree as the total number of line crossings,
where the crossing lines belong to different document clusters.

Note that for a given k- or [k, w]-clustering, the line density and line-crossing mea-
sures of clutter are compared to the default PC visualization, which corresponds to
k = 1.

5.2. Visual Loss Measures

In this section, we present measures that quantify the inadvertent visual loss that
occurs during the visual clutter reduction process.

5.2.1. Visual Compression. A drop in the resolution of the visualization will affect the
visual information communicated to the user. We measure this loss in the visualization
in terms of the average compression in the visual distances among the curves.

Let doc1 and doc2 be two documents. The curves corresponding to doc1 and doc2
(along with the parallel coordinates that are at the end points) will define a closed
space in the PC space. Relying on the observation that the amount of visual informa-
tion conveyed by a shape on a 2D graph is proportional to the space (area) covered by
it [Tufte 2001], we define the visual information conveyed by these two curves (i.e.,
�visual(doc1, doc2)) as the area in the visualization space between the two curves corre-
sponding to doc1 and doc2 (Figure 16(a)).

Let D be a set of documents, �visual() denote the function that returns visual dis-
tances in the original high-resolution (low clustering) visualization, and �′

visual() denote
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Fig. 16. (a) The visual distance between two curves (b) may be lost if the corresponding two documents are
clustered together into a single curve.

the visual distances in the low-resolution (high clustering) visualization. Given these,
the amount of visual compression in the visualization is defined as

compvisual(D) = 1 −
∑

doci,doc j∈D(doci �=doc j) �
′
visual(doci, doc j)∑

doci,doc j∈D(doci �=doc j) �visual(doci, doc j)
.

Intuitively, X % visual compression implies that curves are perceived to be X % closer
in the average to each other than they really are after the clustering (Figure 16(b)).

5.2.2. Value-Normalized Visual Compression. Note that the preceding visual diversity
measure does not consider the actual values that are being visualized to the user. One
can argue that the visual diversity is more important when the documents are diverse;
that is, if the document set does not contain diverse documents, then the visualization
does not need to be diverse either. Let us define the value difference between two
documents doc1 and doc2 as

�val(doc1, doc2) =
∑

1≤i≤m

�val,i(doc1, doc2),

where �val,i(doc1, doc2) denotes the difference between doc1 and doc2 along the ith term.
Note that the term �val,i can be defined in different ways. One possible definition is in
terms of the absolute difference between the values of the corresponding terms (i.e.,
L1-distance).

�val,i(doc1, doc2) = |doc1.termi − doc2.termi|
Since it considers the absolute difference between the term values, this definition does
not take into account the value distribution. Alternatively, one can consider the struc-
ture of the value-clustering hierarchies and define �val,i as

�val,i(doc1, doc2) = �hier,i(doc1, doc2)

where �hier,i(doc1, doc2) is the amount of loss in precision (as defined in Section 4.1)
needed to cluster the values doc1.termi and doc2.termi into the range represented by
their closest common ancestor in the value clustering hierarchy.

Alternatively, one can define �val(doc1, doc2) directly using a dot-product-based in-
terpretation of document similarity.

�val(doc1, doc2) = m −
⎛
⎝ ∑

1≤i≤m

doc1.termi × doc2.termi

⎞
⎠
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Table I. Acronyms for Visual Clutter Measures

Abbreviation Meaning
LD Line Density

TCL Total Crossing Lines

UCL Unique Crossing Lines
CC Cluster Compression

Given the appropriate definition of �val, we define value-normalized compression in
visual diversity as

compnorm(D) = 1 −
∑

doc1,doc2∈D(doc1 �=doc2) �
′
visual(doc1, doc2) × �val(doc1, doc2)∑

doc1,doc2∈D(doc1 �=doc2) �visual(doc1, doc2) × �val(doc1, doc2)
.

6. EVALUATION

In this section, we study the visual clutter and loss behaviors of the proposed PhC
scheme. For this purpose, we use two datasets.

— Katrina news dataset, which was also used in our past work [Di Caro et al. 2008]: the
dataset contains 750 hurricane Katrina-related news articles, published between
August 25, 2005 and February 26, 2008. The reason why we chose this dataset as a
case study earlier in the article and for evaluation in this section is that the event
has a multitude of, now well-understood, facets, including geographic, humanitar-
ian, economic (e.g., employment- and energy-related), and political (local, regional,
and federal) aspects. In our experiments we used the filter and term context shown
in Figure 7(c) (keyword “hurricane” as filter, with the coordinates “government”,
“federal”, “city”, and “state”).

— NSF abstracts dataset, which contains 1000 abstracts of National Science Founda-
tion (NSF) funded research8. This dataset contains abstracts that describe a diverse
spectrum of scientific research topics. Furthermore, given the interdisciplinary na-
ture of most NSF funded research, the dataset also provides opportunities to inves-
tigate interrelationships between different research areas. In our experiments we
used filter and term context shown in Figure 2 (keyword “ocean” as filter, with the
coordinates: “system”, “model”, and “process”).

For each user-selected visualization coordinate (i.e., term), we have created the
corresponding value-clustering hierarchy by recursively splitting the value range
[0, 1] using EM clustering of the values along that coordinate in the selected dataset
[Dempster et al. 1977], until no further splitting is possible or until a predetermined
depth is reached9.

6.1. Visual Clutter Reduction

Figure 17 shows the drop in the values of the various visual clutter measures intro-
duced in Section 5 (see Table I for the acronyms) as a function of the visualization
resolution (i.e., minimum document cluster size k) selected by the user. As can be
seen here, in both datasets, the amount of clutter, especially the number of line cross-
ings, can be reduced multiple orders by using even relatively low k values, such as k
= 2. While the absolute value of the reduction is data dependent, the results are very
similar for both datasets and highlight the fact that one can achieve less cluttered
visualizations of the data even with low reductions in resolution.

8http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
9In the experiments, we used a maximum depth of 5 levels.
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Fig. 17. Visual clutter as a function of the resolution selected by the user; as can be seen here, the amount
of clutter can be reduced multiple orders by using even low k values (e.g., k = 2 or 3). See Table I for the
acronyms.

Fig. 18. Visual compression as a function of the resolution selected by the user; as can be seen here, the
visual compression behavior is consistent across data sources.

The quick flattening of the curves in Figure 17 indicates that a significant portion
of the visual clutter can be eliminated using only small degrees (k) of clustering, as
noninformative line crossings are quickly removed from the PhC visualization.

6.2. Visual Loss

In order to study the impact of low-resolution visualizations on the visual loss, we
consider the loss measures presented in Section 5.2. Figure 18 shows the values of the
various loss measures as function of the minimum document cluster size lower bound
(k) selected by the user. As can be seen here, despite the multiple orders of reductions
in visual clutter as k increases (see Figure 17), the amount of compression in visual
distances grows much slower. This indicates that the generalization scheme presented
in this article is able to remove visual clutter while maintaining the major patterns
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Fig. 19. The impact of the upper bound w (varied as a ratio of the total data size) on (a) (b) visual clutter
and (c) (d) visual compression. Note that w = 100 corresponds to the default case where no upper bound is
provided (the amount of suppression corresponding to different w settings are shown as data labels within
boxes in (c) and (d)).

intact. Especially in terms of pure visual compression and compression normalized
based on L1 interpretation of document distances, the amount of visual compression is
only ∼ 20; that is, on the average, curves are perceived to be 20% closer to each other
than they really are. When hierarchy- or dot-product-based document distances are
considered, the amount of value-normalized visual loss is relatively higher, but still
on the average, curves are perceived to be only ∼ 30%−40% closer to each other than
they really are. Most importantly, all four measures stabilize beyond a small level of
k, indicating that the stable patterns with only limited information loss emerge as k
increases.

6.3. Impact of the Upper Bound (w ) and Outlier Suppression

Figure 19 shows the impact of providing a w upper bound (i.e., using [k, w]-clustering
instead of k-clustering; note that in these charts w = 100 corresponds to the default
case where no upper bound is provided).

As Figures 19(a) and (b) show, providing looser (i.e, higher) upper bounds on the
document cluster sizes tends to reduce the line density as well as the crossings, thus
eliminating visual clutter. However, as can be seen in Figures 19(c) and (d), this also
corresponds to relatively high visual compression rates.

One way to reduce the loss due to visual compression is to provide tighter document
cluster size upper bounds. As Figures 19(c) and (d) show, an upper bound of ∼ 25%
is able to reduce the visual compression rate significantly (in some cases very close
to 0.0%), without causing significant document suppression (< 5% in these experi-
ments)). A quick look at Figures 16(a) and (b) also confirms that the amount of visual
clutter is still very low at 25% upper bound rate.
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Table II. The Scoring Rubric for the Subjective Assessments.

1 2 3 4 5
Not at all Maybe no Maybe yes I think so Yes, no doubt about it

Further reducing the document cluster size upper bound has three undesirable
impacts: First of all, the rate of document suppression jumps to significant rates.
Secondly, the resulting increase in the number of document clusters would imply that
line density and other visual clutter measures, including the line crossings, would in-
crease. Finally, pushing the document cluster size upper bound further down than 25%
may in fact cause a rebound in the information loss (visual compression) as, after the
resulting suppression of a large portion of outlier documents, the system would try to
merge as many of the new clusters of documents as possible to resist the increase in
visual clutter.

7. USER STUDIES

We conducted a series of user studies to understand whether (and why) our proposed
system, Parallel hierarchical Coordinates (PhC) is effective in helping users observe
and understand text corpora.

The participants that were involved in this study had different technical back-
grounds. None of them was an expert in the data visualization domain and they were
not part of the team that has developed PhC. The study is divided in four sets of
experiments.

(1) subjective assessment of the usefulness of PC-based approaches for the exploration
of text documents, in comparison with other schemes (21 participants);

(2) task-oriented assessment of the effectiveness of the proposed approach in commu-
nicating specific data patterns, in comparison with other schemes (18 participants);

(3) assessment of the effectiveness of our proposed scheme PhC with respect to the
standard PC (19 participants);

(4) verification of the information loss measures used for the analytical evaluation
(21 participants).

Depending on the particular evaluation goal, we have used both subjective and task-
oriented evaluation strategies. In subjective studies, users were asked to respond to
a series questions about PC, PhC, and other visualization schemes; Table II lists the
rubric scale used in the subjective studies.

For these studies, again depending on the particular evaluation goal, we used both
real and synthetic data. If specified otherwise, the studies were done on the Katrina
news dataset described earlier.

7.1. Effectiveness of Parallel Coordinates in Visualizing Patterns in Data Collections

Although PC visualization [Inselberg and Dimsdale 1990] is not our contribution, our
first goal was to verify whether using a PC-based scheme for visualizing data collec-
tions is indeed the right strategy.

7.1.1. Subjective Assessment. Therefore, this subjective user study aimed at assessing
the effectiveness of PC-based visualizations for the exploration of collections. For this
study, we constructed a synthetic dataset with 4 visualization attributes and 10 data
entries. The data entries were created such that they form two different clusters:
the 4-dimensional centroids of the clusters ci = < ci,1, ci,2, ci,3, ci,4 > were randomly
chosen according to a normal distribution with mean 0.5 and variance 0.5, while the
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Fig. 20. Three different schemes visualinge three clusters: c1 = < 0.3, 0.7, 0.3, 0.7 >, c2 =
< 0.7, 0.7, 0.7, 0.7 >, and c3 = < 0.9, 0.1, 0.9, 0.1 >.

Table III. Average Participant Scores for Effectiveness of Parallel Coordinates in Visualizing Patterns in
Data Collections (N indicates scores from the nonexperts and E indicates responses from the data

management experts)

Question Radviz (N) Matrix (N) PC-baed (N) Radviz (E) Matrix (E) PC-based (E)

Q1 3.07 / 5 2.92 / 5 2.31/ 5 2.57 / 5 2.86 / 5 3.14 / 5
Q2 3.30 / 5 3.61 / 5 2.89 / 5 3.57 / 5 3.00 / 5 4.85 / 5
Q3 3.46 / 5 3.07 / 5 2.69 / 5 2.57 / 5 2.29 / 5 3.28 / 5

data entries were randomly generated around these centroids as < vi,1, vi,2, vi,3, vi,4 >,
where vi, j is a normally distributed random variable with mean ci, j and variance 0.2.

The participants were presented with three scenarios, each scenario were visualized
using Radviz [Hoffman et al. 1997], matrix-oriented visualization[Keim 2002], and PC-
based schemes (see Figure 20 for samples), and the participants were asked to respond
to the following three questions for each case.

(Q1) Are you able to observe and discriminate the relationships (e.g., similarity, dif-
ference) among the selected terms?

(Q2) Are you able to observe and discriminate the relationships (e.g., similarity, dif-
ference) among the corresponding documents in the collection?

(Q3) How intuitive do you think this tool is for exploring the relationships among the
terms and documents in the collection?

The participants were classified in advance into two groups based on their expertise
in databases and data mining. Even though none of the participants was an expert
in data visualization, 8 of the participants (which we refer to as experts) had experi-
ence in data management, while 13 users (which we call nonexperts) did not have any
knowledge in the data management area.

The results, reported in Table III, indicate a major difference between nonexperts
in data management and experts. According to these results, subjectively, nonexperts
preferred Radviz or Matrix visualizations, whereas (again subjectively) data manage-
ment experts did not prefer these visualization schemes. This, we believe, was the
case because (while a PC-based visualization scheme looks less familiar to users at the
first sight) data managements experts are able to perceive patterns in the data using
a PC-based approach better than they do with Radviz or Matrix.

7.1.2. Task-Oriented Assessment. We next considered task-oriented verification of the
effectiveness of the proposed visualization approach. In particular we focused on
tasks involving identification of the numbers of clusters in the data. For this pur-
pose, we again considered three multidimensional data visualization techniques: the
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Table IV. Percentage of the Correct Guess of the Number of Clusters

Type of scenario PC-based Radviz Matrix

single-shift scenarios 58.3% 16.7% 33.3%
polar equi-distance scenarios 91.7% 0% 8.3%

equi-ratio scenarios 91.7% 0% 0%
Avg 80.6% 5.6% 13.9%

pixel-oriented matrix visualization [Keim 2002], Radviz [Hoffman et al. 1997], and our
proposal.

In order to better observe the advantages and disadvantages of different schemes
in helping users identify the data clusters, we focused on challenging situations with
similar, difficult to distinguish clusters coexisting in the dataset. In particular, we
considered three types of data distribution scenarios.

Single-shift scenarios. This scenario consists of data clusters that differ from each
other in only one dimension. For example, two data clusters randomly gener-
ated around < 0.6, 0.6, 0.6, 0.7 > and < 0.6, 0.6, 0.6, 0.5 > would give us a 4-
dimensional single-shift scenario.

Equiratio scenarios. In this scenario, the data clusters have similar compositions
along the different dimensions. For instance, a pair of clusters around points <
0.6, 0.6, 0.6, 0.6 > and < 0.3, 0.3, 0.3, 0.3 > is an example of this type of scenario.

Polar equidistance scenarios. This set of scenarios specifically focuses on the Rad-
viz visualization; in particular, those dimensions that would be placed opposite to
each other in the radial visualization are given similar values. A pair of clusters
randomly generated around < 0.3, 0.7, 0.3, 0.7 > and < 0.7, 0.7, 0.7, 0.7 > would
be an example. Figure 20 provides an example: here, the three visualization
schemes visualize 3 clusters c1 = < 0.3, 0.7, 0.3, 0.7 >, c2 = < 0.7, 0.7, 0.7, 0.7 >,
and c3 = < 0.9, 0.1, 0.9, 0.1 >.

We constructed two scenarios (with two and three clusters respectively) for each
of these types for a total of six datasets. Given a scenario with n cluster centroids
and 4 visualization attributes, we generated m = 50 data entries for each centroid
such that they form n different clusters around the 4-dimensional cluster centroids
ci = < ci,1, ci,2, ci,3, ci,4 >. The data entries were computed as < vi,1, vi,2, vi,3, vi,4 >, where
vi, j is a normally distributed random variable with mean ci, j and variance 0.2.

We finally built three cases of six random visualizations each, and each of the 18
participants was asked to work only on one of them. The participants were presented
with the three visualizations of different scenarios (sequentially in random order) and
asked to identify the numbers clusters in the data. The random order ensured data
participants could not guess the number of clusters for one visualization using the
hints from a previous visualization for the same scenario. The participants were also
not told which was our contribution.

Table IV shows the results of the study in terms of the percentage of cases where the
number of clusters were correctly identified by the users. As these results demonstrate,
PC-based visualizations helped the participants achieve 80% of accuracy on average,
whereas the other visualizations were not effective on these difficult scenarios. The
single-shift scenarios proved more difficult cases for PC-based schemes; but Radviz
and Matrix faired worse even in those scenarios. In the polar equidistance scenarios,
we were expecting Radviz to be ineffective and this was indeed the case. Interestingly,
however, the matrix visualization also fared poorly for those scenarios. Furthermore,
in equiratio scenarios users of neither the Radviz nor the Matrix visualizations could
identify a single case correctly.
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Table V. Qualitative Questions: Average Values

Qualitative questions PC-based Radviz Matrix

Is it easy to use? 3.82 / 5 3.47 / 5 1.59 / 5
Is it effective? 4.12 / 5 2.82 / 5 1.71 / 5

Does it give a good overview of the distribution
of documents and features?

83.4% of
the users

17.6% of
the users

0% of
the users

Although, in this set of experiments, our focus was to objectively evaluate the users’
preferences on difficult cases, we also asked each participant to provide subjective
feedback through an exit questionnaire. The users were asked to give a rating from
1 to 5 (see Table II) to questions about the ease and the effectiveness of the three
schemes. The results reported in Table V confirm our previous observations about the
user perception and the effectiveness of the three schemes.

7.2. Effectiveness of k -Generalizations with PhC

After confirming the potential of PC for data collection visualization, our next goal
was to see whether the proposed PhC approach provides additional benefits. For this
purpose, we ran a second set of subjective studies where participants were asked to
compare standard PC visualization with PhC using the same document collection. For
this purpose, we selected three combinations of terms which express three different
facets of the discussion on events related to hurricane Katrina.

Case 1 — terms: bush, state, louisiana. Analysis of the news about the relationships be-
tween the government and the management of the emergency in the state of Louisiana.

Case 2 — terms: hurricane, damage, louisiana, mexico. Analysis of the news about the
geographic extent of the physical damages of the hurricane.

Case 3 — terms: hurricane, oil, price, production, gas, energy. Analysis of the news about
the implications of the hurricane on oil and energy production in the region.

For each of the aforesaid cases, we presented to the participants the standard PC
visualization of the data as well as the k-generalized version (where k = 2). Figure 21
shows an example. The participants were asked to respond to a set of questions in
which they subjectively evaluated the effectiveness of these PhC approach.

(A.) This clustering preserves the existing relationships between the terms and the
documents.

(B.) Clustering makes the relationships between the terms and the documents easier
to observe and understand.

Assertion A is to understand if the users feel that the PhC scheme preserves the
main patterns in the data. The second assertion, B, provides feedback on how effective
PhC is in visualizing such patterns with respect to the standard PC approach. Again,
for both cases (or contexts), the users had to provide a score (from 1 to 5 as described
in Table II).

The average user ratings for both assertions are shown in Table VI. These results
indicate that, in all cases (from the simplest one with three parallel coordinates to the
third case with six) the users were positive (between “Maybe yes” and “I think so”) in
the validities of both assertions. As expected, given that there is some information loss
in the generalization process, it is not surprising that the participants were reluctant
to give the rating of “Yes, no doubt about it”. Therefore, in the next study we will assess
whether the information loss versus visual clutter reduction results that showed the
advantages of PhC over PC were based on valid loss measures.
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Fig. 21. Given a set of context keywords (case 2, in this figure), the users were asked to compare the
standard PC visualization with the k-generalized version of the system PhC.

Table VI. User Ratings Values for PhC

Case Assertion A Assertion B Avg

1 3.72 / 5 3.56 / 5 3.64 / 5
2 3.94 / 5 3.72 / 5 3.83 / 5
3 3.72 / 5 3.50 / 5 3.56 / 5

Avg 3.79 / 5 3.59 / 5 3.68 / 5

7.3. Appropriateness of the Quantitative Measures

In Section 6, we had observed experimentally that PhC was highly effective in reducing
visual clutter while minimizing visual loss. These results were, on the other hand,
based on loss measures presented in Section 5 and were based on the assumption
(common in the literature [Koffka 1999]) that the area between the curves on the
display reflected the distance perceived between the curves. In this set of experiments,
we validate whether the distances between the curves on the PhC display are indeed
correlated to the distances users perceive when provided with the original data entries.

In this study, we primarily focused on observing the correlation between: (a) the 21
participants’ assessments of the curve similarities and (b) the similarity assessments
of the curves based on the area-based distance measure described in Section 5. We
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Fig. 22. Curve-based visualizations of the three tables in Figure 23. The participants were asked whether
they think the data entry represented by curve A or curve B appears to be more similar to the entry corre-
sponding to the curve highlighted in red.

Fig. 23. The three tables used for validating the information loss measures defined in Section 5. In each
table, the first row (in bold) corresponds to the target data entry; the second and third rows correspond to
the candidate entries. The participants were asked to judge which candidate entry was more similar to the
target entry.

provided each one of the participants the data curve plots shown in Figure 22 and
asked them to select the curve (among the black ones) that appears to be more similar
to the red curve. The results has shown that similarity assessments were very highly
correlated (correlation ∼ 1.0). This supports the appropriateness of the distance (and
consequently the loss) measures we used in our experiments.

Secondly, we also considered whether participants’ similarity assessments for the
curves are correlated well with their similarity assessments if they are provided the
pure data. For this purpose, we also provided them the three data tables, shown in
Figure 23, corresponding to the these curves and asked them to pick among the two
candidate data entries the one that they think is most similar to the highlighted data
entry. In this study, 20 out of the 21 participants made similar similarity selections
when given the data tables and when given the corresponding curve plots. Only one
participant made a different selection in one of the tables for the two schemes (the
participant selected the second row for Table 3 and the curve B for the plot PC 3; see
Figures 22 and 23). Along with the previous results showing the effectiveness of the
curve-based visualizations, this supports the observation that the curves used in PhC
have the potential to correctly capture the data similarity/distance judgments of users.

8. CONCLUSIONS AND FUTURE WORK

In this article, we presented a new visualization mechanism, called Parallel hierarchi-
cal coordinates (or PhC) for supporting the visualization and exploration of document
collections. At its core, PhC relies on a parallel-coordinates-based approach, where
multidimensional vectors are mapped onto a 2D space in such a way that documents
with similar term frequencies are represented as similar poly-lines or curves in the
visualization space. PhC associates a value-clustering hierarchy to each visualization
coordinate (e.g., term provided by a user) and leverages these hierarchies to reduce
visual clutter in the visualization with minimal information loss. The user can then
interact with the system to selectively roll-up or drill-down along the different visu-
alization coordinates to explore the patterns in the document set, without being over-
loaded with visual clutter.

In our future works, we will consider the selection of the dimensions to be used
for generalization. We also plan to investigate the impact of the number of dimen-
sions used for generalization and their ordering on the reduction of visual clutter and
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information loss and carry out user studies designed to investigate the effectiveness of
the proposed approach and its future extensions also in higher-level tasks (e.g., pattern
seeking).
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