
CompSurf: An Environment for Exploring Surface

Reconstruction Methods on a Grid

June 10, 2003

Michael B. Gousie1, Gregory Williams,

Trevor Agnitti, and Nicholas Doolittle

Department of Mathematics & Computer Science

Wheaton College

Norton, MA 02766

e-mail: mgousie@wheatoncollege.edu

1Corresponding author

Abstract

CompSurf is a novel visualization system that enables researchers in the area of Geographic

Information Systems (GIS) to compare multiple surface reconstruction techniques simultane-

ously. The system displays two digital elevation models (DEM) and grid-based contours from

which the surfaces are derived. The researcher can view the surfaces from any angle and ex-

amine statistics for each. The system’s object oriented design allows the researcher to add new

interpolation or approximation methods easily; a dynamically linked library obviates the need

for system recompilation. A graphical user interface allows easy manipulation or computation

of surfaces, and automatically incorporates new reconstruction methods added to the system.

Keywords: contours, interpolation, DEM, visualization, GUI

2

1 Introduction

The use of geographic information systems (GIS) is continually increasing, as more and more town

planners, environmentalists, and traditional researchers use such systems in their work. These

systems layer patterns or colors, which depict data such as soil type, roads, census information,

and the like, over a two-dimensional map. One of the newer features of such systems is the ability

to view such data in three dimensions, as can be done in ArcView and MapInfo. The user can then

view the desired data in the context of the surrounding topology.

Digital Elevation Models (DEM) are often used to store three-dimensional elevation data via a

regular grid. Because DEMs may not be readily available for a specific area due to costs, propri-

etary formats, and so forth, and/or because they are storage intensive, they are often interpolated or

approximated from contour or other sparse data, freely available from the U.S. Geological Survey

(USGS) or other sources. A GIS may incorporate several surface reconstruction techniques; the

user may create a surface with one of the available methods, but has no way to determine if the

resulting surface is “good.” Such systems are not designed for the surface reconstruction researcher

to evaluate the properties of a newly computed surface or to compare one surface to another easily.

CompSurf is a novel system that allows a surface reconstruction researcher to develop and test

new reconstruction methods. The system allows two DEMs to be imported or computed, and then

be displayed simultaneously, along with the underlying data. Although we assume the initial eleva-

tion data are contours digitized to a regular grid, the system can be extended easily to incorporate

other kinds of data. The grid-based approach has been used successfully in many interpolation

and approximation methods, such as TOPOGRID (Hutchinson, 1988), available in ArcInfo. When

the data consists of contours, raster methods do not have the problem of flat triangles that may

be produced by TIN methods (Jaakkola and Oksanen, 2000). The researcher can perform various

transformations that are applied to all of the data on the screen simultaneously. This keeps all of the

surfaces in the same orientation, allowing easy and intuitive qualitative evaluation of the displayed

surfaces.

CompSurf’s object-oriented design allows researchers to include easily new surface reconstruc-

tion methods in the system by incorporating objects in the hierarchy. System elements are written

in an abstract manner such that they may be replaced, extended, or removed from the system with-

3

out affecting the rest of the program. Elements of the system make use of dynamic linking to

provide the ability to introduce new elements at run-time with no need for recompilation or static

linking. These features provide the researcher with a flexible environment which may be extended

to suit specific needs while at the same time reducing the effort necessary to implement such ex-

tensions. By allowing the researcher to focus on the development of new reconstruction methods

and not the supporting application framework, time may be more efficiently spent on the research

of new methods.

The unique interface of CompSurf gives the user the choice of loading existing contour and

DEM files or selecting a reconstruction algorithm to compute a DEM from a contour file. Once

DEMs have been loaded, they can be viewed and compared side by side. The viewing angle can

be changed to a set of predefined positions, or rotated arbitrarily. The surfaces can be further ma-

nipulated through zooming, resolution, and projection options. When one surface view is changed

in these ways, all other surface views are likewise changed, allowing the user to focus on the dif-

ferences due solely to the reconstruction methods. Finally, the researcher can invoke statistics for

each surface to allow for quantitative comparisons.

2 Previous Work

Visualization in the geosciences is complex, in part because of the vast amount of data that is

available and the interaction among that data that researchers wish to explore. Of course, there are

many full-fledged GIS as well as smaller systems available. All such systems will not be mentioned

here, but rather, we give a sampling of those that allow direct comparisons of surfaces or have other

related features.

The U.S. Army’s Topographic Engineering Center has just completed an extensive survey of

550+ terrain visualization software products [10]. These range from the large systems such as

ArcInfo, to small systems (see below), to software that does some mapping as an extra feature or

for simple visualization purposes; Matlab is such an example. Some, such as 3D Studio MAX, are

general modeling and animation packages, and do not have any specific terrain tools associated

with them.

Large systems, such as ArcView and MapInfo, allow the user to view multiple surfaces created

4

by different interpolation methods. For example, inverse distance weighting, thin plate interpola-

tion, Triangular Irregular Network (TIN) generation, and kriging are all available in ArcView or

ArcInfo. However, it is difficult for the surface reconstruction researcher to compare the various

methods because each produces its own “view.” In general, many GIS are difficult to use, requir-

ing specialists to find the desired information and options to display the results in the desired way

(Elvins and Jain, 1998). This means surface reconstruction researchers must learn much about

a GIS even if they only need to understand a small subset of the entire system. Elvins and Jain

suggest creating a GUI by following human-factors engineering practices.

Smaller systems generally do not have interpolating or other surface reconstruction features.

One such system is Descartes, which allows researchers to perform visual data exploration on the

Web (Andrienko and Andrienko, 1999). The system is easier for non-cartographers to use than

traditional systems, but does not support 3D visualization. Comparisons, including some statis-

tics, can be made between two DEMs through a dialog box in Autometric’s SoftPlotter 2.0 [8].

However, the statistics generated are not meant for surface reconstruction researchers and are in-

tended rather for simple DEM comparison purposes. CLRview (Hoinkes and Lange, 1995),[1] is a

system for GIS visualization intended for Silicon Graphics IRIS workstations. Although some of

the controls seem non-intuitive (i.e., many options are accomplished through the keypad or other

keys), one nice feature allows the user to store an eye position so that a view can be duplicated

later. The system also has the option of skipping polygons for faster rendering. MapRender3D [6]

is a nice terrain viewer very good at importing/exporting various file formats. GeoTerrain [3], part

of the larger GEOPAK package, is a vector-based system that allows one to compare two TINs or

lattices. MapCalc [5] is a grid-based tool that allows statistical comparison between two maps. It

is generally used with other visualization software, such as Surfer [9]. Delta3D [2] uses gridded

elevation data and claims that such data can be visually and mathematically compared. LI Contour

V+ [4] is a surface modeling and contouring system that can compare two surface models to cal-

culate the volumetric difference. SIGNAL [7] allows users to statistically compare measurement

data. The system allows multiple surfaces to be viewed and compared. This tool is geared toward

wireless communications planning. Finally, (Huang et al., 2001) discuss an integrated GIS and

virtual reality system for the Web.

5

3 CompSurf

CompSurf is a system that allows for surface reconstruction, the visualization of the resulting sur-

faces, and has features for comparing the quality of the output. In general, four specific problems

manifest themselves in visualization tools (Gahegan, 1999): the speed of graphical rendering, the

problems due to visual effects, the range of approaches and mappings, and the orientation of the

user within the environment. CompSurf addresses some of these issues.

Because CompSurf is tailored to researchers in surface reconstruction, some of the complex-

ities of general visualization tools are obviated. The researcher can focus on the problems of

surface reconstruction and the comparisons between generated surfaces. The speed of rendering

is addressed by allowing the user to change the terrain resolution. One of the main goals of the

system is to ensure that the user does not “get lost” when viewing several surfaces at once; the

orientation of all surfaces on the screen are always identical. Finally, visual effects are minimized

by allowing the user to choose either perspective or parallel projections, depending on the desired

outcome.

The system displays a window divided into four quadrants, similar to SIGNAL [7], the lower

right of which contains the main graphical user interface (GUI). The GUI was written without the

use of any templates or pre-made buttons so as to allow maximum freedom in design. Custom

texture maps are used to create unique buttons and icons that need minimal explanation. The

remaining three quadrants are used to display the initial data, in the form of contours, and the

reconstructed surfaces. Fig. 1 shows the system displaying a contour file and two DEMs based on

that data, along with the input/compute GUI.

The rendering and GUI portions of CompSurf are written in C++; OpenGL is the graphics API.

All testing was done on a computer running Linux. Source code bundled in a tar file is available at

http://cs.wheatoncollege.edu/mgousie/research.html.

3.1 Getting Data and Computing a DEM

The current system supports grid-based elevation data. Contour data files may be opened and the

contour lines displayed. A DEM can be computed either from such contour data or imported as a

complete file. The system currently reads data in ASCII Grid form, similar to the GRID format in

6

ArcView, but is easily extensible to handle other data file types (see Section 4).

The user typically begins by opening a contour file or other data source. This is accomplished

by pressing the Display/Compute button, revealing a the GUI as shown in Fig. 1. In this case, an

800 × 800 raster contour file taken from a USGS map of Mt. Washington, NH (tuckermans.grid)

and a corresponding DEM (tuckermans.maxc.grid) have been loaded previously. The GUI now

shows that the user chose Open DEM File, and then selected tuckermans.beta.grid, a different

DEM based on the same contour data, from the pulldown menu. The pulldown menu shows files

stored in a system-created data directory; the user may type in a filename instead. By default,

contours are displayed in the lower left quadrant. The user has the choice of where to display the

resulting surface; in this case, the upper left quadrant was chosen, as indicated by the × in the

corresponding quadrant of the “mini window” in the lower right of the GUI. Note the names of the

files are shown in the lower left of each quadrant in which data is displayed.

Surfaces are rendered by triangulating the regular grid and displaying the triangles using

OpenGL. Note that the image looks rather rough; by default, the resolution is coarse so as to

give better performance when manipulating the images. This is achieved by skipping elevation

points before triangulating, resulting in larger triangles and thus a much rougher appearance (see

Section 3.2 for more details).

To compute a new DEM using one of the system’s interpolation or approximation methods,

the user starts by clicking the Display/Compute button, and then Compute DEM. The user can

choose a method from the list, which currently includes inverse distance weighting, thin plate

approximation, and some experimental algorithms. The user can then type in a file name to save

the result, or let the system save it to a default name. The user may also choose the quadrant in

which to display the result.

3.2 Manipulating and Assessing Surfaces

Once data has been loaded, the system looks as in Fig 2. The main GUI, the details of which are

shown in Fig. 3, is used to manipulate the surface(s). To enhance performance, the surfaces are

displayed in low resolution by default. This is done by skipping data points before triangulating.

The resolution slider can be moved to the right to increase the resolution. The finest resolution is

7

reached when all DEM data points are used. More refined methods for changing the resolution

of terrain surfaces can be found in (Cignoni et al., 1997), (Puppo, 1996), and (Brown, 1996).

For consistency, the same resolution is always applied to all of the displayed surfaces. When

rotating the image(s), however, the resolution is decreased automatically to speed rendering. If the

user wishes to compromise speed for accuracy, pressing the “lock” next to the resolution slider

maintains the current resolution when rotating or scaling. However, the user still may move the

slider, overriding the lock, if desired.

A typical problem faced by the surface reconstruction researcher is to compare surfaces com-

puted from the same data by two different methods. While visually comparing surfaces, it is critical

to keep the DEMs in the same orientation so that any perceived differences in the surfaces are not

due to slight variations in the viewing angle. Fig. 2 shows what occurs when the user chooses

to rotate the data: all of the surfaces and the contour data are rotated simultaneously to keep the

viewer’s orientation constant. Clearly, the right surface is smoother than the left in this view. The

surfaces can also be rotated to common views by clicking on one of the “eyeballs” in the upper

right of the GUI (Fig. 3). The “eyeballs” are positioned around a sample DEM, giving the user the

option to view the scene from one of the four sides or from the top.

An important consideration for surface reconstruction researchers is to compare surfaces

(DEMs) to one another and to the initial data, not only visually but quantitatively. We have in-

cluded several statistics, including the well known root-mean-square error (RMSE) (Rinehart and

Coleman, 1988) and total squared curvature. For a square grid of n2 total points, the latter is found

by comparing each computed elevation value to its four neighbors (Briggs, 1974), as shown in Eq.

1.

Csq =
n−1∑

i=2

n−1∑

j=2

(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j)
2 (1)

where each u represents the elevation at the grid location indexed by i and j. A low total squared

curvature indicates a smooth surface. Because small local imperfections may bias the total squared

curvature, CompSurf computes an average absolute curvature as well (Eq. 2).

Cave =
1

(n− 2)2

n−1∑

i=2

n−1∑

j=2

|(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j)| (2)

Statistics for the surface are displayed by pressing the button for the indicated surface. The

RMSE of a DEM in one quadrant relative to a DEM in another quadrant and/or relative to the

8

original contours is displayed as appropriate. The statistics are visible in Fig. 2; in this case,

they are representative of the surface in the left quadrant. The RMSE relative to the contours is

computed by comparing the tuckermans.beta.grid DEM and the contours only at grid locations

where there is a valid elevation in both files. Note that the RMSE is not zero, indicating that

this surface is an approximation and not an interpolation. The RMSE compared to the surface

refers to the error found when comparing the two surfaces, in this case tuckermans.beta.grid and

tuckermans.maxc.grid. Other statistical measures can be added easily.

CompSurf also features zooming. Researchers often desire to view a small portion of a DEM.

This can be done by pressing the zoom in button. Once again, the action is applied to both surfaces

to keep the views consistent; see Fig. 4, which clearly shows that the peak area in the right surface

is much smoother than the left. Finally, the surfaces can be viewed using a parallel projection

instead of the default perspective projection. The nature of a perspective projection may distort a

DEM enough to make it difficult to determine if the data or the projection is causing an unwanted

artifact.

If the user is more text input oriented, CompSurf has analagous keyboard input for all the GUI

options; for example, the arrow keys can be used for rotation. Finally, the system can be run using

a full screen window or a smaller three-quarter screen window size.

4 Implementation Details

The system uses an object oriented design, programmed in C++. The class hierarchy is shown in

Fig. 5. By using object orientation, the system allows modular extensions to be written and used

without re-compiling or linking the system executable. In addition, by using class inheritance, new

interpolating/approximating methods may be built upon existing methods, greatly simplifying and

reducing the amount of code necessary to add a method to the system. This is similar to the general

visualization tool ADVIZOR (Eick, 2000), in which extensibility was incorporated into the design

making it easy to add new interactive operations.

The CompSurf design allows discrete units of code (classes) to modify the surface data in

a pipeline. These classes each inherit from the Element class, implementing an interface which

allows the querying of the surface data. Element classes are further divided between Filters and

9

Inputs; Filter elements each hold a pointer to the preceding element in the pipeline while Input

elements are the source of data - the beginning of the pipeline. While only GridInput has been

implemented in the current system, the design readily supports adding classes to handle input from

other sources (e.g. Digital Line Graph files).

Filter classes represent two types of elements: interpolating methods and Sinks. Sinks are filter

classes which are responsible for utilizing the data at a specific point in the pipeline. Sinks may be

thought of as outputs for the pipeline. For example, the Surface sink uses OpenGL to render the

surface to a display device, while the GridOutput sink writes a Grid file with the surface data.

The modular design of the system allows elements to be loaded at run time through an abstrac-

tion in the ElementFactory class. The system’s ElementFactory class is responsible for instanti-

ating elements. It makes use of the native operating system’s dynamic loading feature allowing

element classes to be dynamically linked into the running system. Since the ElementFactory class

is the single point of contact with operating system dependent function calls, it may be replaced at

compile time with a version suitable for the native operating system. The version implemented in

the original system supports the dlopen API native to SunOS and Linux. Future versions of the El-

ementFactory might implement support for the Mac OS/NeXT dyld API or the BSD dld API. Even

the ElementFactory class is written in a modular fashion, so that only the load so() function

need be replaced to support other dynamic loading APIs.

Adding an element class to the system is a straightforward process of implementing the Ele-

ment interface. A simple example of the methods required to conform to the Element and Filter

interfaces may be seen in the Normalize class. The constructor, getRows(), getColumns(),

and getHeight() methods all have trivial one line implementations, while the lines of code in

preload(), refresh(), and message() each number in the single-digits.

The most important part of implementing a new element is the elementinfo() function

which provides metadata to ElementFactory’s dynamic loader. Using the Normalize class as an

example, the elementinfo() function is implemented as follows:

1: #ifdef SHAREDOBJ

2: ElementInfo& elementinfo (void) {

3: #else

4: ElementInfo& normalizeelementinfo (void) {

10

5: #endif

6: ElementInfo* info = new ElementInfo;

7: strcpy(info->classname, "Normalize");

8: strcpy(info->description, "Normalize Data");

9: info->factory = normalizefactory;

10: strncpy(info->type, "UTIL", 4);

11: return *info;

12: }

Lines 1 through 5 conditionally name the metadata function elementinfo() if the sys-

tem is being compiled with support for dynamic loading, or normalizeelementinfo() if

the system will be compiled statically into a single binary (If the system is compiled without dy-

namic loading enabled, the metadata function in each element needs a unique name since they

will all share a single namespace). Allowing compiling without support for dynamic loading al-

lows using the system with new methods even on systems for which a dynamic loader has not

yet been written. Line 6 instantiates a new ElementInfo structure to hold the metadata. Lines

7 and 8 define identifying strings for the class. Line 9 assigns a function pointer (pointing to

the normalizefactory() function) to the factory slot of the struct. The factory function is

responsible for instantiating and returning a new object; The Normalize factory has a trivial imple-

mentation:

Element* normalizefactory (void* p) {

return new Normalize ((Element*) p);

}

The factory function takes an argument p (of type pointer to Element) since Normalize is a

Filter class; p is a pointer to the rest of the pipeline. The possible types of element are interpolating

method (“INTR”), source (“SRC”), sink (“SINK”), and a miscellaneous utility method (“UTIL”).

Line 10 of the elementinfo() function defines Normalize as implementing a utility method.

Finally, line 11 returns the metadata structure.

The makeelement script included with the system may be used to compile a new element as a

dynamically loadable extension:

11

./makeelement -s Filter normalize.cpp

The makeelement script will handle the compilation of an element into a shared object while

insuring dependencies on superclasses are met. The -s argument may be used to specify the el-

ement’s superclass insuring that at run time the superclass is linked into the system before the

subclass. After running the makeelement script, the element may be immediately used in the sys-

tem. In the case of interpolating methods, the method name will appear in the GUI as an available

method for interpolation.

The extensibility of the system was tested by adding five interpolation/approximation functions,

including inverse distance weighting and several experimental algorithms, such as RomSpline. In

each case, the new method included an elementinfo() function, a constructor, and functions

to fill in the virtual functions of the base class. The makeelement script was then invoked to add

the new algorithm to CompSurf. The new algorithms were added to the GUI automatically without

recompilation of the entire system.

5 Conclusions and Future Work

We have implemented CompSurf, a novel visualization system for the surface reconstruction re-

searcher. The system allows the user to view contour data and DEMs, as well as compute new

DEMs from contours using the available interpolation/approximation methods. Among the fea-

tures of the non-traditional GUI is rotation, in which all of the comparison surfaces remain in the

same orientation. Faster rendering is achieved by adjusting the resolution of the surface(s). This

feature and all others are applied to all of the displayed surfaces to keep the user’s view consistent.

Statistics, including curvature and RMSE, can be displayed for the quantitative assessment of a

surface.

CompSurf was designed with extensibility in mind. To that end, we employed an object-

oriented approach. New functionality, such as a new interpolation method, can be added easily

without the need for recompilation. Several interpolation/approximation methods have been im-

plemented to test the system’s extensibility.

This is an experimental system, and as such, it has its faults. Its rendering speed could be

improved, and some of the GUI elements may need more refinement; for example, while one

12

may rotate the surfaces, there is no option for translation. Additional features, such as profile

comparisons, coordinate displays, and other statistics may be added in the future.

Acknowledgments – This work was funded in part by Mars and Wheaton Fellowships.

13

References

Andrienko, G. L., Andrienko, N. V., 1999. Interactive maps for visual data exploration. Interna-

tional Journal of Geographical Information Science 13(4), 355–374.

Briggs, I., 1974. Machine contouring using minimum curvature. Geophysics 39(1), 39–48.

Brown, P. J. C., 1996. Selective mesh refinement for interactive terrain rendering. Technical report.

Computer Laboratory, Cambridge UniversityPembroke St, Cambridge, CB3 QSG, UK, 16

pp.

Cignoni, P., Puppo, E., Scopigno, R., 1997. Representation and visualization of terrain surfaces at

variable resolution. The Visual Computer 13(5), 199–217.

Eick, S. G., 2000. Visual discovery and analysis. IEEE Transactions on Visualization and Com-

puter Graphics 6(1), 44–58.

Elvins, T. T., Jain, R., 1998. Engineering a human factor-based geographic user interface. IEEE

Computer Graphics and Applications 18(3), 66–77.

Gahegan, M., 1999. Four barriers to the development of effective exploratory visualisation tools for

the geosciences. International Journal of Geographical Information Science 13(4), 289–309.

Hoinkes, R., Lange, E., 1995. 3d for free – toolkit expands visual dimensions in GIS. GEO World

8(7), 54–57.

Huang, B., Jiang, B., Li, H., 2001. An integration of GIS, virtual reality and the internet for vi-

sualization, analysis and exploration of spatial data. International Journal of Geographical

Information Science 15(5), 439–456.

Hutchinson, M. F., 1988. Calculation of hydrologically sound digital elevation models. In: Pro-

ceedings of the Third International Symposium on Spatial Data Handling. International Ge-

ographical Union, Columbus, Ohio, pp. 117–133.

Jaakkola, O., Oksanen, J., 2000. Creating DEMs from contour lines: Interpolation techniques

which save terrain morphology. GIM International 14(9), 46–49.

14

Puppo, E., 1996. Variable resolution terrain surfaces. In: Proceedings of the 8th Canadian Confer-

ence on Computational Geometry, pp. 202–210.

Rinehart, R. E., Coleman, E. J., 1988. Digital elevation models produced from digital line graphs.

In: Proceedings of the ACSM-ASPRS Annual Convention. Vol. 2. American Congress

on Surveying and Mapping, American Society for Photogrammetry and Remote Sensing,

pp. 291–299.

Internet References

[1] CLRview. http://www.clr.utoronto.ca/CLRVIEW/cvmain.html.

[2] Delta3D. http://www.tec.army.mil/TD/tvd/survey/Delta3D.html.

[3] GeoTerrain. 1998. http://selectservices.bentley.com/technotes/faqs/6163.htm.

[4] LIContourV+. http://www.tec.army.mil/TD/tvd/survey/LI Contour V.html.

[5] MapCalc. 2002. http://www.redhensystems.com/.

[6] MapRender3D. http://www.maprender3d.com/index.htm.

[7] SIGNAL. http://www.edx.com.

[8] Softplotter. http://techsupport.autometric.com/Products/softplotter.

[9] Surfer. http://www.goldensoftware.com/.

[10] Survey of Terrain Visualization Software. 2002. http://www.tec.army.mil/TD/tvd/survey/.

15

Figure Captions

Figure 1. Opening new DEM. Contours and DEM have been loaded previously.

Figure 2. Rotated, high resolution DEMs, associated contours, and statistics.

Figure 3. Main GUI.

Figure 4. Close-up view of peak area.

Figure 5. Class hierarchy; dashed lines indicate virtual classes.

16

Figure 1: Opening new DEM. Contours and DEM have been loaded previously.

17

Figure 2: Rotated, high resolution DEMs, associated contours, and statistics.

18

Figure 3: Main GUI.

19

Figure 4: Close-up view of peak area.

20

Element

Filter

ISA

Sink

ISA

GridInput

ISA

Subset

ISA

AverageSubset

ISA

Statistics

ISA

Spline

ISA

Smoothing

ISA

Normalize

ISA

InverseDistance

ISA

Buffer

ISA

RomSpline

ISA

MPSpline

IDWSpline

ISA

ISA

GridOutput

ISA

Surface

ISA

HeightMap

ISA

Contour

ISA

Figure 5: Class hierarchy; dashed lines indicate virtual classes.

21

