
COMP 345 Operating Systems Fall 2015

Dining Philosophers Using a Monitor

enum threestates {thinking, hungry, eating}; // create enumerated type

threestates state [5]; // array for 5 philosophers

class monitor {

enum threestates {thinking, hungry, eating};

threestates state [5];

condition me [5]; // "condition" type for calling wait/signal

void monitor :: pickup (int i) {

state [i] = hungry;

test (i);

if (state [i] != eating)

me[i].wait();

}

void monitor :: putdown (int i) {

state [i] = thinking;

test ((i+4)%5);

test ((i+1)%5);

}

void monitor :: test (int k) {

if (state [(k+4)%5] != eating &&

state [(k+1)%5] != eating &&

state [k] == hungry) {

state [k] = eating;

me [k].signal();

}

}

monitor :: monitor () {

// initialize the philosophers to thinking

int i;

for (i = 0; i < 5; i++)

state [i] = thinking;

}

Process Pi

repeat

while (thinking);

// get hungry - pick up both chopsticks

dp.pickup (i); // dp is global monitor

// eat!

while (! full)

eat();

// done - put down the chopsticks

dp.putdown (i);

until (time.eof());


