Boolean Algebra

Boolean Algebra Basics

- + means OR
- . means AND; $A \cdot B$ is the same as $A B$
- AND has higher precedence than OR
- Commutative Rules

$$
\begin{aligned}
A+B & =B+A \\
A \cdot B & =B \cdot A
\end{aligned}
$$

- Associative Rules

$$
\begin{aligned}
A+(B+C) & =(A+B)+C \\
A \cdot(B \cdot C) & =(A \cdot B) \cdot C
\end{aligned}
$$

- Distributive Rules

$$
\begin{aligned}
& A \cdot(B+C)=(A \cdot B)+(A \cdot C) \\
& A+(B \cdot C)=(A+B) \cdot(A+C)
\end{aligned}
$$

Boolean Algebra Theorems

$$
\begin{align*}
A+A B & =A \tag{1}\\
A+\bar{A} B & =A+B \tag{2}\\
A B+\bar{A} C+B C & =A B+\bar{A} C \tag{3}\\
A(A+B) & =A \tag{4}\\
A(\bar{A}+B) & =A B \tag{5}\\
(A+B)(A+\bar{B}) & =A \tag{6}\\
(A+B)(\bar{A}+C) & =A C+\bar{A} B \tag{7}\\
(A+B)(\bar{A}+C)(B+C) & =(A+B)(\bar{A}+C) \tag{8}
\end{align*}
$$

DeMorgan's Laws

$$
\begin{align*}
\overline{A B C} & =\bar{A}+\bar{B}+\bar{C} \tag{9}\\
\overline{A+B+C} & =\bar{A} \cdot \bar{B} \cdot \bar{C} \tag{10}
\end{align*}
$$

