Chapter 4

The Processor
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FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the major functional units and
the major connections between them. All instructions start by using the program counter to supply the instruction
address to the instruction memory. After the instruction is fetched, the register operands used by an instruction
are specified by fields of that instruction. Once the register operands have been fetched, they can be operated
on to compute a memory address (for a load or store), to compute an arithmetic result (for an integer arithmetic-
logical instruction), or a compare (for a branch). If the instruction is an arithmetic-logical instruction, the result
from the ALU must be written to a register. If the operation is a load or store, the ALU result is used as an
address to either store a value from the registers or load a value from memory into the registers. The result from
the ALU or memory is written back into the register file. Branches require the use of the ALU output to determine
the next instruction address, which comes either from the ALU (where the PC and branch offset are summed) or
from an adder that increments the current PC by 4. The thick lines interconnecting the functional units represent
buses, which consist of multiple signals. The arrows are used to guide the reader in knowing how information
flows. Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a
dot where the lines cross.
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FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control
lines. The top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination
address); the multiplexor is controlled by the gate that “ANDs” together the Zero output of the ALU and a control
signal that indicates that the instruction is a branch. The middle multiplexor, whose output returns to the register
file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or the output of the
data memory (in the case of a load) for writing into the register file. Finally, the bottommost multiplexor is used to
determine whether the second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or
from the offset field of the instruction (for a load or store). The added control lines are straightforward and
determine the operation performed at the ALU, whether the data memory should read or write, and whether the
registers should perform a write operation. The control lines are shown in color to make them easier to see.
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FIGURE 4.3 Combinational logic, state elements, and the clock are closely related. In a synchronous digital
system, the clock determines when elements with state will write values into internal storage. Any inputs to a
state element must reach a stable value (that is, have reached a value from which they will not change until after
the clock edge) before the active clock edge causes the state to be updated. All state elements in this chapter,
including memory, are assumed to be positive edge-triggered; that is, they change on the rising clock edge.
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FIGURE 4.4 An edge-triggered methodology allows a state element to be read and written in the same clock
cycle without creating a race that could lead to indeterminate data values. Of course, the clock cycle still must be
long enough so that the input values are stable when the active clock edge occurs. Feedback cannot occur
within one clock cycle because of the edge-triggered update of the state element. If feedback were possible, this
design could not work properly. Our designs in this chapter and the next rely on the edge-triggered timing
methodology and on structures like the one shown in this figure.
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FIGURE 4.5 Two state elements are needed to store and access instructions, and an adder is needed to
compute the next instruction address. The state elements are the instruction memory and the program counter.
The instruction memory need only provide read access because the datapath does not write instructions. Since
the instruction memory only reads, we treat it as combinational logic: the output at any time reflects the contents
of the location specified by the address input, and no read control signal is needed. (We will need to write the
instruction memory when we load the program; this is not hard to add, and we ignore it for simplicity.) The
program counter is a 32-bit register that is written at the end of every clock cycle and thus does not need a write
control signal. The adder is an ALU wired to always add its two 32-bit inputs and place the sum on its output.
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FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing the program counter. The
fetched instruction is used by other parts of the datapath.
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FIGURE 4.7 The two elements needed to implement R-format ALU operations are the register file and the ALU.
The register file contains all the registers and has two read ports and one write port. The design of multiported
register files is discussed in Section B.8 of Appendix B. The register file always outputs the contents of the
registers corresponding to the Read register inputs on the outputs; no other control inputs are needed. In
contrast, a register write must be explicitly indicated by asserting the write control signal. Remember that writes
are edge-triggered, so that all the write inputs (i.e., the value to be written, the register number, and the write
control signal) must be valid at the clock edge. Since writes to the register file are edge-triggered, our design can
legally read and write the same register within a clock cycle: the read will get the value written in an earlier clock
cycle, while the value written will be available to a read in a subsequent clock cycle. The inputs carrying the
register number to the register file are all 5 bits wide, whereas the lines carrying data values are 32 bits wide.
The operation to be performed by the ALU is controlled with the ALU operation signal, which will be 4 bits wide,
using the ALU designed in

Appendix B. We will use the Zero detection output of the ALU shortly to implement branches. The overflow
output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then.
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FIGURE 4.8 The two units needed to implement loads and stores, in addition to the register file and ALU of
Figure 4.7, are the data memory unit and the sign extension unit. The memory unit is a state element with inputs
for the address and the write data, and a single output for the read result. There are separate read and write
controls, although only one of these may be asserted on any given clock. The memory unit needs a read signal,
since, unlike the register file, reading the value of an invalid address can cause problems, as we will see in
Chapter 5. The sign extension unit has a 16-bit input that is sign-extended into a 32-bit result appearing on the
output (see Chapter 2). We assume the data memory is edge-triggered for writes. Standard memory chips
actually have a write enable signal that is used for writes. Although the write enable is not edge-triggered, our
edge-triggered design could easily be adapted to work with real memory chips. See Section B.8 of Appendix B
for further discussion of how real memory chips work.

Copyright © 2014 Elsevier Inc. All rights reserved.



PC +4 from instruction datapath —

S Branch
Add target
—

Res_,\d J ALU operation
Instruction register 1 Read |

Read data 1

register 2 To branch

Write Registers ALU Zero control logic

register Read J

Write dala? ]

data

RegWrite
16 | sign- 32
" | extend

FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition and a separate adder to
compute the branch target as the sum of the incremented PC and the sign-extended, lower 16 bits of the
instruction (the branch displacement), shifted left 2 bits. The unit labeled Shift left 2 is simply a routing of the
signals between input and output that adds 00,,,, to the low-order end of the sign-extended offset field; no actual
shift hardware is needed, since the amount of the “shift” is constant. Since we know that the offset was sign-
extended from 16 bits, the shift will throw away only “sign bits.” Control logic is used to decide whether the
incremented PC or branch target should replace the PC, based on the Zero output of the ALU.
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FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. This example shows how

a single datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two
multiplexors are needed, as described in the example.
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FIGURE 4.11 The simple datapath for the core MIPS architecture combines the elements required by different
instruction classes. The components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic
instructions (load-store word, ALU operations, and branches) in a single clock cycle. Just one additional
multiplexor is needed to integrate branches. The support for jumps will be added later.
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Instruction Instruction Desired ALU control
opcode operation ALU action input

load word XXXXXX 0010
SW 00 store word XXXXXX add 0010
Branch equal 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and the different function
codes for the R-type instruction. The opcode, listed in the first column, determines the setting of the ALUOp bits.
All the encodings are shown in binary. Notice that when the ALUOp code is 00 or 01, the desired ALU action
does not depend on the function code field; in this case, we say that we “don’t care” about the value of the
function code, and the funct field is shown as XXXXXX. When the ALUOp value is 10, then the function code is
used to set the ALU control input. See Appendix B.
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FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are the ALUOp and
function code field. Only the entries for which the ALU control is asserted are shown. Some don’t-care entries
have been added. For example, the ALUOp does not use the encoding 11, so the truth table can contain entries
1X and X1, rather than 10 and 01. Note that when the function field is used, the first 2 bits (F5 and F4) of these
instructions are always 10, so they are don’t-care terms and are replaced with XX in the truth table.
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Field | 0 rs rt rd | shamt funct
Bit positions 31:26 25:21 20:16 15:11 10:6 5:0

a. R-type instruction

Field | 350r43 l rs rt address |
Bit positions 31:26 25:21 20:16 15:0

b. Load or store instruction

Field 4 | rs ‘ rt ‘ address |
Bit positions 31:26 25:21 20:16 15:0

c. Branch instruction

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use two different instruction
formats. The jump instructions use another format, which we will discuss shortly. (a) Instruction format for R-
format instructions, which all have an opcode of 0. These instructions have three register operands: rs, rt, and rd.
Fields rs and rt are sources, and rd is the destination. The ALU function is in the funct field and is decoded by the
ALU control design in the previous section. The R-type instructions that we implement are add, sub, AND, OR,
and slt. The shamt field is used only for shifts; we will ignore it in this chapter. (b) Instruction format for load
(opcode = 35,,,) and store (opcode = 43,,,,) instructions. The register rs is the base register that is added to the
16-bit address field to form the memory address. For loads, rt is the destination register for the loaded value. For
stores, rt is the source register whose value should be stored into memory. (c) Instruction format for branch
equal (opcode =4). The registers rs and rt are the source registers that are compared for equality. The 16-bit
address field is sign-extended, shifted, and added to the PC + 4 to compute the branch target address.
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FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identified. The
control lines are shown in color. The ALU control block has also been added. The PC does not require a write
control, since it is written once at the end of every clock cycle; the branch control logic determines whether it is
written with the incremented PC or the branch target address.
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Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the The register destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).
RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes from the | The second ALU operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the

address input are replaced by the value on
the Write data input.

MemtoReg | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

FIGURE 4.16 The effect of each of the seven control signals. When the 1-bit control to a two-way multiplexor is
asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is deasserted, the
multiplexor selects the 0 input. Remember that the state elements all have the clock as an implicit input and that
the clock is used in controlling writes. Gating the clock externally to a state element can create timing problems.
(See Appendix B for further discussion of this problem.)
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FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field
from the instruction. The outputs of the control unit consist of three 1-bit signals that are used to control
multiplexors (RegDst, ALUSrc, and MemtoReg), three signals for controlling reads and writes in the register file
and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining whether to possibly
branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch
control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC.
Notice that PCSrc is now a derived signal, rather than one coming directly from the control unit. Thus, we drop
the signal name in subsequent figures.
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FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction.
The first row of the table corresponds to the R-format instructions (add, sub, AND, OR, and slt). For all these
instructions, the source register fields are rs and rt, and the destination register field is rd; this defines how the
signals ALUSrc and RegDst are set. Furthermore, an R-type instruction writes a register (Reg-Write = 1), but
neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally replaced
with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The
ALUORp field for R-type instructions is set to 10 to indicate that the ALU control should be generated from the
funct field. The second and third rows of this table give the control signal settings for lw and sw. These ALUSrc
and ALUORp fields are set to perform the address calculation. The MemRead and MemWrite are set to perform
the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt
register. The branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the
ALU. The ALUOp field for branch is set for a subtract (ALU control = 01), which is used to test for equality. Notice
that the MemtoReg field is irrelevant when the RegWrite signal is O: since the register is not being written, the
value of the data on the register data write port is not used. Thus, the entry MemtoReg in the last two rows of the
table is replaced with X for don’t care. Don’t cares can also be added to RegDst when RegWrite is 0. This type of
don’t care must be added by the designer, since it depends on knowledge of how the datapath works.
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FIGURE 4.19 The datapath in operation for an R-type instruction, such as add $t1,$t2,$t3. The control lines,
datapath units, and connections that are active are highlighted.
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FIGURE 4.20 The datapath in operation for a load instruction. The control lines, datapath units, and
connections that are active are highlighted. A store instruction would operate very similarly. The main difference
would be that the memory control would indicate a write rather than a read, the second register value read would
be used for the data to store, and the operation of writing the data memory value to the register file would not

occur.
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FIGURE 4.21 The datapath in operation for a branch-on-equal instruction. The control lines, datapath units,
and connections that are active are highlighted. After using the register file and ALU to perform the compare, the
Zero output is used to select the next program counter from between the two candidates.
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inputoroutput | Signainame | Reormat | 1w | sw | beq |
Op5 0

Inputs 1 1 0
Op4 0 0 0 0

Op3 0 0 1 0

0Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 1 1 0

Outputs RegDst 1 0 X X
ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 1

ALUOp1 1 0 0 0

ALUOpPO 0 0 0 1

FIGURE 4.22 The control function for the simple single-cycle implementation is completely specified by this
truth table. The top half of the table gives the combinations of input signals that correspond to the four opcodes,
one per column, that determine the control output settings. (Remember that Op [5:0] corresponds to bits 31:26 of
the instruction, which is the op field.) The bottom portion of the table gives the outputs for each of the four
opcodes. Thus, the output RegWrite is asserted for two different combinations of the inputs. If we consider only
the four opcodes shown in this table, then we can simplify the truth table by using don’t cares in the input portion.
For example, we can detect an R-format instruction with the expression Op5 ? Op2, since this is sufficient to
distinguish the R-format instructions from Iw, sw, and beqg. We do not take advantage of this simplification, since
the rest of the MIPS opcodes are used in a full implementation.
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Field 000010 address
Bit positions 31:26 25:0

FIGURE 4.23 Instruction format for the jump instruction (opcode = 2). The destination address for a jump
instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the 26-bit address field in the
jump instruction and adding 00 as the 2 low-order bits.
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FIGURE 4.24 The simple control and datapath are extended to handle the jump instruction. An additional
multiplexor (at the upper right) is used to choose between the jump target and either the branch target or the
sequential instruction following this one. This multiplexor is controlled by the jump control signal. The jump target
address is obtained by shifting the lower 26 bits of the jump instruction left 2 bits, effectively adding 00 as the
low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 32-bit

address.
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FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty clothes to be
washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30 minutes for their task.
Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes just 3.5 hours. We show the
pipeline stage of different loads over time by showing copies of the four resources on this two-dimensional time
line, but we really have just one of each resource.
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Instruction | Register ALU Data | Register
Instruction class fetch read operation | access write

Load word (1w) 200 ps 100 ps 200 ps 200 ps 100 ps | 800 ps
Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps | 600 ps
OR,slt)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component. This calculation
assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no delay.
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FIGURE 4.27 Single-cycle, nonpipelined execution in top versus pipelined execution in bottom. Both use the
same hardware components, whose time is listed in Figure 4.26. In this case, we see a fourfold speed-up on
average time between instructions, from 800 ps down to 200 ps. Compare this figure to Figure 4.25. For the
laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer stage would set the stage
time. The pipeline stage times of a computer are also limited by the slowest resource, either the ALU operation
or the memory access. We assume the write to the register file occurs in the first half of the clock cycle and the

read from the register file occurs in the second half. We use this assumption throughout this chapter.
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. 200 400 600 800 1000
Time T T T T T

add $s0, $t0, $t1 | IF [—= 1D % MEM—EB@

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to the laundry pipeline in
Figure 4.25. Here we use symbols representing the physical resources with the abbreviations for pipeline stages
used throughout the chapter. The symbols for the five stages: IF for the instruction fetch stage, with the box
representing instruction memory; ID for the instruction decode/register file read stage, with the drawing showing
the register file being read; EX for the execution stage, with the drawing representing the ALU; MEM for the
memory access stage, with the box representing data memory; and WB for the write-back stage, with the
drawing showing the register file being written. The shading indicates the element is used by the instruction.
Hence, MEM has a white background because add does not access the data memory. Shading on the right half
of the register file or memory means the element is read in that stage, and shading of the left half means it is
written in that stage. Hence the right half of ID is shaded in the second stage because the register file is read,
and the left half of WB is shaded in the fifth stage because the register file is written.
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Program

execution : 200 400 600 800 1000
order Time T T T T T
(in instructions) g p——
add $s0, $t0, $t1 IF —=C 1D MEM WB |
sub $t2, $s0, $t3 IF —= 1D EX MEM ﬂBE

FIGURE 4.29 Graphical representation of forwarding. The connection shows the forwarding path from the
output of the EX stage of add to the input of the EX stage for sub, replacing the value from register $s0 read in
the second stage of sub.
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Program
execution : 200 400 600 800 1000 1200 1400
order Time : : ; : . T

(in instructions) R \ I
w $s0, 20(8t1) | IF —=5 1D ﬁ MEM—qI-—{ﬂBE
‘... \

T N B O T Nl 7Y s T \

/bubblcy “bubble) Cbubble)\ C bubble/(bubble/

7 Lo ) '\J.w\ J°
\
sub $t2, $s0, $t3 I— 10 2EX—MEM ‘EB

FIGURE 4.30 We need a stall even with forwarding when an R-format instruction following a load tries to use
the data. Without the stall, the path from memory access stage output to execution stage input would be going
backward in time, which is impossible. This figure is actually a simplification, since we cannot know until after the

subtract instruction is fetched and decoded whether or not a stall will be necessary. Section 4.7 shows the details
of what really happens in the case of a hazard.
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Program
execution
order

(in instructions)

add $4, $5, $6

beq $1, $2, 40

or $7, $8, $9

200
|

400 600 800 1000 1200 1400
| | | | |

Time

Instruction
fetch

Data

ALY access

Reg Reg

- |

200 ps

Data
access

Instruction

fetch Reg

bubble xbubble bubble Crg:x/ble bubble

*|Instruction Data
fetch access

A

ALU Reg

400 ps

FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control hazards. This
example assumes the conditional branch is taken, and the instruction at the destination of the branch is the OR
instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the process of creating a
stall is slightly more complicated, as we will see in Section 4.8. The effect on performance, however, is the same
as would occur if a bubble were inserted.
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Program

execution 200 400 600 800 1000 1200 1400

Time >
order
(in instructions)
add $4, $5, $6 | IReg| ALy | D3 geg
beq $1,52,40 <o M| [Res| AU | o |Res
<— ] |nstruction Data
lw $3, 300($0) 200 ps| fetch Reg| ALU 1 aocess |Re9
A
Program
execution Time 200 400 600 800 1000 1200 1400
order T T T T T T T >
(in instructions)
add $4, 85,86 |"Sucton|  leg | Ay | D22 | Reg
beq $1,$2,40 ————""NC"  |Reg| AU | 02 |Reg
200 ps
bubble/ bubble/ bubble/ bubble/( bubble
@
—or $7, $8, $9 - »|Instruction Data
! 400 ps fetch Reg ALY access | \°9

FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. The top drawing shows
the pipeline when the branch is not taken. The bottom drawing shows the pipeline when the branch is taken. As
we noted in Figure 4.31, the insertion of a bubble in this fashion simplifies what actually happens, at least during
the first clock cycle immediately following the branch. Section 4.8 will reveal the details.
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IF: Instruction fetch

ID: Instruction decode/

register file read

EX: Execute/
address calculation

MEM: Memory access

3

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|

WB: Write back

b \
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FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction
can be mapped onto the datapath from left to right. The only exceptions are the update of the PC and the write-
back step, shown in color, which sends either the ALU result or the data from memory to the left to be written into
the register file. (Normally we use color lines for control, but these are data lines.)

Copyright © 2014 Elsevier Inc. All rights reserved.



Time (in clock cycles)

Program
execution CC1
order

(in instructions)

CC5

CC7

lw $1, 100($0) | IM

lw $2, 200($0)

Iw $3, 300($0)

FIGURE 4.34 Instructions being executed using the single-cycle datapath in Figure 4.33, assuming pipelined
execution. Similar to Figures 4.28 through 4.30, this figure pretends that each instruction has its own datapath,
and shades each portion according to use. Unlike those figures, each stage is labeled by the physical resource
used in that stage, corresponding to the portions of the datapath in Figure 4.33. IM represents the instruction
memory and the PC in the instruction fetch stage, Reg stands for the register file and sign extender in the
instruction decode/register file read stage (ID), and so on. To maintain proper time order, this stylized datapath
breaks the register file into two logical parts: registers read during register fetch (ID) and registers written during
write back (WB). This dual use is represented by drawing the unshaded left half of the register file using dashed
lines in the ID stage, when it is not being written, and the unshaded right half in dashed lines in the WB stage,
when it is not being read. As before, we assume the register file is written in the first half of the clock cycle and
the regqister file is read during the second half.
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IF1D IVEX EXIMEM MEMWE

Instruction
memary

FIGURE 4.35 The pipelined version of the datapath in Figure 4.33. The pipeline registers, in color, separate
each pipeline stage. They are labeled by the stages that they separate; for example, the first is labeled IF/ID
because it separates the instruction fetch and instruction decode stages. The registers must be wide enough to
store all the data corresponding to the lines that go through them. For example, the IF/ID register must be 64 bits
wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC
address. We will expand these registers over the course of this chapter, but for now the other three pipeline
registers contain 128, 97, and 64 bits, respectively.
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FIGURE 4.36 IF and ID: FIRST AND SECOND PIPE STAGES OF AN INSTRUCTION, WITH THE ACTIVE
PORTIONS OF THE DATAPATH IN FIGURE 4.35 HIGHLIGHTED. The highlighting convention is the same as
that used in Figure 4.28. As in Section 4.2, there is no confusion when reading and writing registers, because the
contents change only on the clock edge. Although the load needs only the top register in stage 2, the processor
doesn’t know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers
into the ID/EX pipeline register. We don’t need all three operands, but it simplifies control to keep all three.
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FIGURE 4.37 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure
4.35 used in this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the

EX/MEM pipeline register.
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FIGURE 4.38 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions of
the datapath in Figure 4.35 used in this pipe stage. Data memory is read using the address in the EX/MEM
pipeline registers, and the data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB
pipeline register and written into the register file in the middle of the datapath. Note: there is a bug in this design

that is repaired in Figure 4.41.
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FIGURE 4.39 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in
Figure 4.37, the second register value is loaded into the EX/MEM pipeline register to be used in the next stage.
Although it wouldn’t hurt to always write this second register into the EX/MEM pipeline register, we write the

second register only on a store instruction to make the pipeline easier to understand.
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1D IDEX EXMEM NEM/HE

2] DE: EXMEM VEMWHE

FIGURE 4.40 MEM and WB: The fourth and fifth pipe stages of a store instruction. In the fourth stage, the data
is written into data memory for the store. Note that the data comes from the EX/MEM pipeline register and that
nothing is changed in the MEM/WB pipeline register. Once the data is written in memory, there is nothing left for

the store instruction to do, so nothing happens in stage 5.
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FIGURE 4.41 The corrected pipelined datapath to handle the load instruction properly. The write register
number now comes from the MEM/WB pipeline register along with the data. The register number is passed from

the ID pipe stage until it reaches the MEM/WB pipeline register, adding five more bits to the last three pipeline
registers. This new path is shown in color.
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FIGURE 4.42 The portion of the datapath in Figure 4.41 that is used in all five stages of a load instruction.
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Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5 CC#b CC7 cCcs8 CC9

Program
execution
order

(in instructions) - = o

w $10, 20($1) M ::eg: —[DM il —Ee:gi

|- -1
sub $11, $2, $3 M -Reg oM —Reg

]
add $12, $3, $4 IM — -EKR_GEI: —[DM— —Ee_g:

w $13, 24($1) IM— ‘E:R:eg: | DM—r —EGEJE

add $14, $5, $6 M H —ElR_e_—q" DM Eg

FIGURE 4.43 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation
shows the complete execution of instructions in a single figure. Instructions are listed in instruction execution
order from top to bottom, and clock cycles move from left to right. Unlike Figure 4.28, here we show the pipeline
registers between each stage. Figure 4.44 shows the traditional way to draw this diagram.
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Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CCé6 CC7 cCs8 CC9

Program
execution
order
(in instructions)

Iw $10, 20($1) Insft;:;:lon In;;r::(t;:n Execution a[c):ézs Write-back

sub $11, $2, $3 insinicion | Insirucion | Execution | D212 | write-back

Instruction | Instruction : Data 2
add $12, $3, $4 fotch decoda Execution s Write-back
Instruction | Instruction . Data .
Iw $13, 24($1) fetch decode | EXecution | s | Write-back
Instruction | Instruction : Data ;
add $14, $5, $6 fetch dacod Execution S Write-back

FIGURE 4.44 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.43.
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| add $14, $5, 86 | Iw $13, 24 ($1) | add $12, §3, $4 | sub $11, $2, $3 | w $10, 20($1) |
[ Instruction fetch | Instruction decode | Execution [ Memory | Write-back |

IFAD ID/EX EX/MEM MEM/WB

—{ )
L
u PC Address Raad
x § register 1 Read
Lo\ 1 g data 1
I Read
2 register 2
Instruction £ g8
mamory — Rogisters o, 1
Write data 2 L
regsber u
Vinto X
* data 9
16
a sign. | 32
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FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and
4.44. As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram.
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w Lo/
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FIGURE 4.46 The pipelined datapath of Figure 4.41 with the control signals identified. This datapath borrows
the control logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now
need the 6-bit funct field (function code) of the instruction in the EX stage as input to ALU control, so these bits
must also be included in the ID/EX pipeline register. Recall that these 6 bits are also the 6 least significant bits of
the immediate field in the instruction, so the ID/EX pipeline register can supply them from the immediate field
since sign extension leaves these bits unchanged.
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Instruction
operation Funct

ALU control
input

Instruction
opcode
LW 00

Desired
ion code ALU action
XXXXXX add

load word 0010
SW 00 store word XXXXXX add 0010
Branch equal 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.47 A copy of Figure 4.12. This figure shows how the ALU control bits are set depending on the
ALUOp control bits and the different function codes for the R-type instruction.
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RegDst The register destination number for the Write The register destination number for the Write register comes
register comes from the rt field (bits 20:16). from the rd field (bits 15:11).
RegWrite None. The register on the Write register input is written with the value
on the Write data input.
ALUSrc The second ALU operand comes from the second | The second ALU operand is the sign-extended, lower 16 bits of
register file output (Read data 2). the instruction.
PCSrc The PC is replaced by the output of the adder that | The PC is replaced by the output of the adder that computes
computes the value of PC + 4. the branch target.
MemRead None. Data memory contents designated by the address input are
put on the Read data output.
MemWrite None. Data memory contents designated by the address input are
replaced by the value on the Write data input.
MemtoReg The value fed to the register Write data input The value fed to the register Write data input comes from the
comes from the ALU. data memory.

FIGURE 4.48 A copy of Figure 4.16. The function of each of seven control signals is defined. The ALU control
lines (ALUOpP) are defined in the second column of Figure 4.47. When a 1-bit control to a 2-way multiplexor is
asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is deasserted, the
multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 4.46. If the Branch signal
and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only
during a beq instruction; otherwise, PCSrc is set to 0.
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Execution/address calculation stage Memory access stage Write-back stage
control lines control lines control lines
Mem- Mem- Reg- Memto-
RegDst ALUOpPO Read Write Write Reg
1 0 0 0 1 0

R-format q o] 0
Tw 0 0 0 1 0 1 0 1 1
sw X 0 0 1. 0 0 1 0 X
beq X 0 1 0 I 0 0 0 X

FIGURE 4.49 The values of the control lines are the same as in Figure 4.18, but they have been shuffled into
three groups corresponding to the last three pipeline stages.
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FIGURE 4.50 The control lines for the final three stages. Note that four of the nine control lines are used in the
EX phase, with the remaining five control lines passed on to the EX/MEM pipeline register extended to hold the
control lines; three are used during the MEM stage, and the last two are passed to MEM/WB for use in the WB
stage.
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FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions
of the pipeline registers. The control values for the last three stages are created during the instruction decode
stage and then placed in the ID/EX pipeline register. The control lines for each pipe stage are used, and
remaining control lines are then passed to the next pipeline stage.
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Time (in clock cycles) -
Value of CC1 CC2 CC3 CC4 CC5 CC6 CCc7 ccs CC9
register $2: 10 10 10 10 10/-20 -20 =20 -20 -20
Program
execution

order
(in instructions) - - -

_
sub $2, $1, $3 Reg_ :D_

and $12, $2, $5

2
W[

or $13, $6, $2 @— —‘i‘l e

\1

add $14, $2,52

-

v sw $15,100($2)

FIGURE 4.52 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the
dependences. All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle
1. The first instruction writes into $2, and all the following instructions read $2. This register is written in clock
cycle 5, so the proper value is unavailable before clock cycle 5. (A read of a register during a clock cycle returns
the value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from the top
datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data
hazards.
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Time (in clock cycles) >
cc1 cc2 CcC3 CC4 CC5 CC®6 cc7 CC8 CC9

Value of register $2: 10 10 10 10 10/-20 =20 -20 =20 -20
Value of EX/MEM: X X X =20 X X X X X
Value of MEM/WB: X X X X —20 X X X X

Program
execution

order
(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14,52, $2

sw $15, 100($2)

FIGURE 4.53 The dependences between the pipeline registers move forward in time, so it is possible to supply
the inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the
pipeline registers. The values in the pipeline registers show that the desired value is available before it is written
into the register file. We assume that the register file forwards values that are read and written during the same
clock cycle, so the add does not stall, but the values come from the register file instead of a pipeline register.
Register file “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock cycle 5
shows register $2 having the value 10 at the beginning and -20 at the end of the clock cycle. As in the rest of
this section, we handle all forwarding except for the value to be stored by a store instruction.
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ID/EX EX/MEM MEM/WB

Registers ALU

Data
memory

a. No forwarding
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EX/MEM.RegisterRd
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b. With forwarding

FIGURE 4.54 On the top are the ALU and pipeline registers before adding forwarding. On the bottom, the
multiplexors have been expanded to add the forwarding paths, and we show the forwarding unit. The new
hardware is shown in color. This figure is a stylized drawing, however, leaving out details from the full datapath
such as the sign extension hardware. Note that the ID/EX.RegisterRt field is shown twice, once to connect to the
Mux and once to the forwarding unit, but it is a single signal. As in the earlier discussion, this ignores forwarding
of a store value to a store instruction. Also note that this mechanism works for slt instructions as well.
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| Muxcontrol | Source | Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

FIGURE 4.55 The control values for the forwarding multiplexors in Figure 4.54. The signed immediate that is
another input to the ALU is described in the Elaboration at the end of this section.
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FIGURE 4.56 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure
4.51, the additions are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however,
leaving out details from the full datapath, such as the branch hardware and the sign extension hardware.
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FIGURE 4.57 A close-up of the datapath in Figure 4.54 shows a 2:1 multiplexor, which has been added to
select the signed immediate as an ALU input.
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Time (in clock cycles)
CC1 cC2 CC3 CC4 CC5 CC#6 CC7 cC8 CcC9

Program
execution
order

(in instructions)

Iw $2, 20($1)

and $4, $2, $5

or $8, 52, $6

add $9, $4, $2

sit $1, $6, $7

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following
instruction (and) goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination
must result in a stall by the hazard detection unit.
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Time (in clock cycles) -
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Reg
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FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle
4, by changing the and instruction to a nop. Note that the and instruction is really fetched and decoded in clock
cycles 2 and 3, but its EX stage is delayed until clock cycle 5 (versus the unstalled position in clock cycle 4).
Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed until clock cycle 5 (versus the
unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time and no

further hazards occuir.
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FIGURE 4.60 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection
unit, and the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate
and branch logic are missing—this drawing gives the essence of the forwarding hardware requirements.
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Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5 CcCé6 CC7 CCs8 CC9

Program
execution
order

(in instructions)

40 beq $1, $3, 28

I

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, §2, $2

—

72w $4, 50($7)

A

FIGURE 4.61 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction
(40, 44, ...) are the addresses of the instructions. Since the branch instruction decides whether to branch in the
MEM stage—clock cycle 4 for the beq instruction above—the three sequential instructions that follow the branch
will be fetched and begin execution. Without intervention, those three following instructions will begin execution
before beq branches to lw at location 72. (Figure 4.31 assumed extra hardware to reduce the control hazard to
one clock cycle; this figure uses the nonoptimized datapath.)
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and $12, $2, 85 : beq $1,83, 7 : sub$10,84,88 before<i> ! before<2>

IF Flush

/" Hazard \|,
| detection
Aokt o/

_H 8
memory

Iw $4, 50(37) . Bubble (nop) :‘ beq $1,$3.7 : sub$10, . .. .: before<1>

Clock 3

IF Flush

/" Hazard "\

| detection :
\ i ]

Clock 4 H H

FIGURE 4.62 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the
next PC address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at
location 72 being fetched and the single bubble or nop instruction in the pipeline as a result of the taken branch.
(Since the nop is really sll $0, $0, 0, it's arguable whether or not the ID stage in clock 4 should be highlighted.)
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Not taken y
Predict taken Predict taken

Taken N 8 5

Not taken y
{ Predict not taken )

Taken S

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that strongly
favors taken or not taken—as many branches do—uwill be mispredicted only once. The 2 bits are used to encode
the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor, which is
incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of its range as

the division between taken and not taken.
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a. From before

b. From target

c. From fall-through

add $s1, $s2, $s3 sub $t4, $t5, $t6 < add $s1, $s2, $s3

if $s2 = 0 then —— if $s1 = 0 then ——
Delay slot add $s1, $s2, $s3 Delay slot
if $s1 = 0 then —
— | DeEven sub $t4, $t5, $t6 L
Becomes Becomes Becomes
i

add $s1, $s2, $s3

if $s2 = 0 then —— if $s1 = 0 then ——

add $s1, $s2, $s3

add $s1, $s2, $s3

sub $t4, $t5, $t6

if $s1 = 0 then —

sub $t4, $t5, $t6

FIGURE 4.64 Scheduling the branch delay slot. The top box in each pair shows the code before scheduling;
the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an independent instruction
from before the branch. This is the best choice. Strategies (b) and (c) are used when (a) is not possible. In the
code sequences for (b) and (c), the use of $s1 in the branch condition prevents the add instruction (whose
destination is $s1) from being moved into the branch delay slot. In (b) the branch delay slot is scheduled from the
target of the branch; usually the target instruction will need to be copied because it can be reached by another
path. Strategy (b) is preferred when the branch is taken with high probability, such as a loop branch. Finally, the
branch may be scheduled from the not-taken fall-through as in (c). To make this optimization legal for (b) or (c), it
must be OK to execute the sub instruction when the branch goes in the unexpected direction. By “OK” we mean
that the work is wasted, but the program will still execute correctly. This is the case, for example, if $t4 were an
unused temporary register when the branch goes in the unexpected direction.
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F Flush

FIGURE 4.65 The final datapath and control for this chapter. Note that this is a stylized figure rather than a
detailed datapath, so it's missing the ALUsrc Mux from Figure 4.57 and the multiplexor controls from Figure 4.51.
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10
1"" Hazard
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unit ] ] 1e
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Control| " WE -1 MEMWE
¢ Cause _l I
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¢ Shift (M)
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> ! Forwarding | ~ |
e—, unit
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FIGURE 4.66 The datapath with controls to handle exceptions. The key additions include a new input with the
value 8000 0180,,, in the multiplexor that supplies the new PC value; a Cause register to record the cause of the
exception; and an Exception PC register to save the address of the instruction that caused the exception. The
8000 0180, input to the multiplexor is the initial address to begin fetching instructions in the event of an
exception. Although not shown, the ALU overflow signal is an input to the control unit.
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Iw $16, 50($7) : slt $15, $6, §7 ' add $1, $2, $1 : or$13,... land$12, ...
H H T JEXFusn 4 '
+

. M :
} u '
ea]———o X 1
-Z '-} EX/MEM
7 ?

M |
u
-~

F Flush

Clock 6

|

sw $26, 1000(80) bubble (nop) . bubble g bubble ,or$13,...,

F Flush

Clock 7

FIGURE 4.67 The result of an exception due to arithmetic overflow in the add instruction. The overflow is
detected during the EX stage of clock 6, saving the address following the add in the EPC register (4C + 4 =
50,.,)- Overflow causes all the Flush signals to be set near the end of this clock cycle, deasserting control values
(setting them to 0) for the add. Clock cycle 7 shows the instructions converted to bubbles in the pipeline plus the
fetching of the first instruction of the exception routine—sw $25,1000($0)—from instruction location 8000
0180,,,. Note that the AND and OR instructions, which are prior to the add, still complete. Although not shown,
the ALU overflow signal is an input to the control unit.
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Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB

FIGURE 4.68 Static two-issue pipeline in operation. The ALU and data transfer instructions are issued at the
same time. Here we have assumed the same five-stage structure as used for the single-issue pipeline. Although
this is not strictly necessary, it does have some advantages. In particular, keeping the register writes at the end
of the pipeline simplifies the handling of exceptions and the maintenance of a precise exception model, which
become more difficult in multiple-issue processors.
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memory [ H |
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FIGURE 4.69 A static two-issue datapath. The additions needed for double issue are highlighted: another 32
bits from instruction memory, two more read ports and one more write port on the register file, and another ALU.

Assume the bottom ALU handles address calculations for data transfers and the top ALU handles everything
else.
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- ALU or branch instruction Data transfer instruction m

Loop: $t0, 0(%$s1)
addi $s1,9$s1,-4

addu $t0,$t0,$s2
bne $s1,%$zero,Loop SwW $t0, 4(3%$s1)

BlWIN|F=

FIGURE 4.70 The scheduled code as it would look on a two-issue MIPS pipeline. The empty slots are no-ops.

Copyright © 2014 Elsevier Inc. All rights reserved.



_ ALU or branch instruction Data transfer instruction m

Loop: addi $s1,%s1,-16 $t0, 0($s1) 1
lw $t1,12(%sl) 2

addu $t0,%$t0,$s2 Tw $t2, 8(%s1) 3

addu $t1,8t1,%s2 Tw $t3, 4(%s1) 4

addu $t2,3t2,%s2 SwW $t0, 16(%$s1) 5

addu $t3,8t3,$s2 sw $t1,12(%s1) 6

SW $t2, 8($sl) 7

bne $s1,%zero, Loop SW $t3, 4(8$s1) 8

FIGURE 4.71 The unrolled and scheduled code of Figure 4.70 as it would look on a static two-issue MIPS
pipeline. The empty slots are no-ops. Since the first instruction in the loop decrements $s1 by 16, the addresses
loaded are the original value of $s1, then that address minus 4, minus 8, and minus 12.
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Instruction fetch
and decode unit

In-order issue

Y \ Y Y

Reservation | | Reservation Reservation | | Reservation
station station T station station
Funct.ional Integer Integer o Flogting Load- Out-of-order execute
units point store
Y
Commit In-order commit
unit

FIGURE 4.72 The three primary units of a dynamically scheduled pipeline. The final step of updating the state
is also called retirement or graduation.

Copyright © 2014 Elsevier Inc. All rights reserved.



Pipeline Issue Out-of-Order/ Cores/
Microprocessor Year | Clock Rate Stages Width Speculation Chip Power

Intel 486 1989 25 MHz 1 1 w
Intel Pentium 1993 66 MHz 5 2 No 1 10 w
Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 w
Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75 w
Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 w
Intel Core 2006 2930 MHz 14 4 Yes 2 75 w
Intel Core i5 Nehalem 2010 3300 MHz 14 4 Yes 1 87 W
Intel Core i5 Ivy Bridge 2012 3400 MHz 14 4 Yes 8 77 W

FIGURE 4.73 Record of Intel Microprocessors in terms of pipeline complexity, number of cores, and power.
The Pentium 4 pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines
would be even deeper.

Copyright © 2014 Elsevier Inc. All rights reserved.



Market Personal Mobile Device Server, Cloud
Thermal design power 2 Watts 130 Watts
Clock rate 1 GHz 2.66 GHz
Cores/Chip 1 4
Floating point? No Yes
Multiple Issue? Dynamic Dynamic
Peak instructions/clock cycle 2 4
Pipeline Stages 14 14

Pipeline schedule

Static In-order

Dynamic Out-of-order with Speculation

Branch prediction 2-level 2-level

1st level caches / core 32 KiB I, 32 KiB D 32 KiB |, 32 KiB D
2nd level cache / core 128-1024 KiB 256 KiB

3rd level cache (shared) - 2-8 MiB

FIGURE 4.74 Specification of the ARM Cortex-A8 and the Intel Core i7 920.
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FO F1 F2 DO D1 D2 D3 D4 EO E1 E2 E3 E4 E5
Branch mispredict

penalty =13 cycles Instruction execute and load/store
|
Instruction z [ ALU/MUL pipe 0 BP
S pipe
fetch % = Ll
i —| 2
AGUDs| s P teten” Instruction decod £ l
E e -
mall | nstruction decode 2 bl ALU pipe 1 E;Pt
BTB —| & P .a °
GRHSB = . BP
o LS pipe Oor1 update

FIGURE 4.75 The A8 pipeline. The first three stages fetch instructions into a 12-entry instruction fetch buffer.
The Address Generation Unit (AGU) uses a Branch Target Buffer (BTB), Global History Buffer (GHB), and a
Return Stack (RS) to predict branches to try to keep the fetch queue full. Instruction decode is five stages and
instruction execution is six stages.
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6.00

Memory hierarchy stalls

5.17
5.00 — M Pipeline stalls 3
M |deal CPI
4.00 |
3.00

2.00
1.41 &

twolf bzrp2 gzip parser gap perlbmk gce crafty vpr vortex

FIGURE 4.76 CPIl on ARM Cortex A8 for the Minnespec benchmarks, which are small versions of the
SPEC2000 benchmarks. These benchmarks use the much smaller inputs to reduce running time by several
orders of magnitude. The smaller size significantly underestimates the CPI impact of the memory hierarchy (See
Chapter 5).
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128-Entry A/" 32 KB Inst. cache (four-way associative) |«
inst. TLB v
(four-way) 16-Byte pre-decode + macro-op
nE fusion, fetch buffer
1 v
Insft::;:ion ) [ . 18-Estry instruction‘queue . |
hardware | ]
Complex ‘éinipﬂ  Simple | Simple ’
. macro-op | macro-op macro-op macro-op
-l\gg:drg /v decoder deo%der decgg_e_r__ dec+oder
28-Entry micro-op loop stream detect buffer
|

ke
| Register alias table and allocator l
Retirement v
register file ¥ 128-Entry r:order buffer
> ~ 36-Entry reservation station '
v v v v v v
ALU ALU Load Store Store ALU
shift shift address = address data shift
I I I
SSE SSE v v ¥ SSE
shuffle shuffle Memory order buffer shuffle
ALU ALU ALU
I | I
128-bit 128-bit 128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load FDIV
1 1 b |
A y Vv ) 4
512-Entry unified | 64-Entry data TLB 32-KB dual-ported data 256 KB unified 12
L2 TLB (4-way) —»| (4-way associative) || cache (8-way associative) cache (eight-way)
v 4
8 MB all core shared and inclusive L3 ——# Uncore arbiter (handles scheduling and
<+— clock/power state differences)

cache (16-way associative)

FIGURE 4.77 The Core i7 pipeline with memory components. The total pipeline depth is 14 stages, with branch
mispredictions costing 17 clock cycles. This design can buffer 48 loads and 32 stores. The six independent units

can begin execution of a ready RISC operation each clock cycle.
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FIGURE 4.78 CPI of Intel Core i7 920 running SPEC2006 integer benchmarks.
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» Branch misprediction % = Wasted work %
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20%
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FIGURE 4.79 Percentage of branch mispredictions and wasted work due to unfruitful speculation of Intel Core
i7 920 running SPEC2006 integer benchmarks.
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1 finclude <x86intrin.h>

2 {define UNROLL (4)

3

4 void dgemm (int n, double* A, double* B, double* C)
B 1

6 for ( int i = 0; i < n; i+=UNROLL*4 )

7 for ( int J=0; jJ < n; j++r ) {

8 __m256d c[4];

9 for ( int x = 0; x < UNROLL; x++ )

10 clx] = _mm256_load_pd(C+i+x*4+j*n);

11

12 fort it k=05 k € s K )

13 {

14 __m256d b = _mm256_broadcast_sd(B+k+j*n);
15 for (int x = 0; x < UNROLL; x++)

16 c[x] = _mm256_add_pd(c[x],

17 _mm256_mul_pd(_mm256_1load_pd(A+n*k+x*4+i), b));
18 }

19

20 for ( int x = 0; x < UNROLL; x++ )

21 _mm256_store_pd(C+i+x*4+j*n, c[x]);

22 }

23 |

FIGURE 4.80 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel
instructions for the x86 (Figure 3.23) and loop unrolling to create more opportunities for instruction-level
parallelism. Figure 4.81 shows the assembly language produced by the compiler for the inner loop, which unrolls
the three for-loop bodies to expose instruction level parallelism.
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vmovapd (%rll),%ymm4

srbx,%rax
%ecx,becx

vmovapd 0x20(%rll),%ymm3
vmovapd 0x40(%rl1l),%ymm2
vmovapd 0x60(%rll),%ymml

$0x8,%rcx
(%rax),%ymm0, %ymmb
wymmb5 , %ymmd , %ymm4
0x20(%rax),%symm0, %ymm5
symm5 , symm3, %ymm3
0x40(%rax),%ymm0, 5ymm5
0x60(%rax),%ymm0, %ymmO
»r8,%rax

»rl0,%rcx
symm5, dymm2 , %ymm2
symmQ, symml, Zymml

68 <dgemm+0x68>
$0x1,%esi

vmovapd %ymm4,(%rll)

1

2 mov

3 xor

4

5

6

7

8 add

9 wvmulpd
10 vaddpd
11 vmulpd
12 vaddpd
13 vmulpd
14  vmulpd
15 add

16 cmp

17 vaddpd
18 vaddpd
19 jne

20 add

i)

22

23

24

vmovapd %ymm3,0x20(%rll)
vmovapd %ymm2,0x40(%rll)
vmovapd %ymml,0x60(%rll)

vbroadcastsd (%rcx,%r9,1),%ymm0

#
#

#
#

#
i
#
#
#
#
#
i
#
1
#

Load 4 elements of C into
register %rax = %rbx
register %ecx = 0

Load 4 elements of C into
Load 4 elements of C into
Load 4 elements of C into

%ymmé

bymm3
%bymm2
%ymml

# Make 4 copies of B element

register %rcx = %rcx + 8

Parallel mul %ymml,4 A elements

Parallel add %ymm5, %ymmé4

Parallel mul %ymml,4 A elements

Parallel add %ymm5, %ymm3

Parallel mul %ymml,4 A elements
Parallel mul %ymml,4 A elements

register %rax = %rax + %r8

compare %r8 to %rax
Parallel add %ymm5, %ymm?2
Parallel add %ymmO, %ymml
jump if not %r8 != %rax

register % esi = % esi + 1

Store %Zymm4 into 4 C elements

Store %ymm3 into 4

elements

C
Store %ymm2 into 4 C elements
C

Store %ymml into 4

Copyright © 2014 Elsevier Inc. All rights reserved.

elements

FIGURE 4.81 The x86 assembly language for the body of the nested loops generated by compiling the unrolled
C code in Figure 4.80.
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unoptimized AVX AVX+unroll

FIGURE 4.82 Performance of three versions of DGEMM for 32x32 matrices. Subword parallelism and
instruction level parallelism has led to speedup of almost a factor of 9 over the unoptimized code in Figure 3.21.
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if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd = 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB

Unn Fig. 2
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if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd = 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd = 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB

Unn Fig. 3
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if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd = 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd = 0)

and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd = 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB 01

Unn Fig. 4
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36 sub $10, $4, $8

40 beq $1, $3, 7 # PC-relative branch to
40 +4+7*4=72

44 and $12, $2, $5

18 or $13, $2, $6

52 add $14, $4, $2

56 s1t $15, $6, $7

/2 1w $4, 50(%$7)

Unn Fig. 5
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ALU control lines [ Function

0000 AND
0001 OR

0010 add

0110 subtract
0111 set on less than
1100 NOR

Table 1
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lw  $t0,0($t0) add $t1,$t0,$t0 addi $t1,$t0,#1
add $tl1,$t0,$t0 addi $t2,$t0.{#5 addi $t2,$t0,#2
addi $t4,8$t1,#5 addi $t3,8t0,#2

addi  $t3,$t0,74
addi $t5,8t0,#5

Table 2
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Type of event MIPS terminology

1/0 device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Table 3
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Table 4

Exception type Exception vector address (in hex)

Undefined instruction

8000 0000,

Arithmetic overflow

8000 0180,
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[HMem | Add | Mux | ALU | Regs | DMem | SignExtend | Shift-left2

200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps

Table 5
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Table 6

20%

20%

0% | 25%

25%

10%
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Table 7

| 0 | a2 || 8|6 |66z
0 4 | 2 -3 -4 10 6 | 8 | 2 |

-16 |
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Table 8

250ps

350ps

150ps

300ps

200ps
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Table 9

45%

20% 20%

15%
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Without Forwarding With Full Forwarding With ALU-ALU Forwarding Only

250ps | 300ps 290ps

Table 10
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Table 11

200ps

120ps

150ps

190ps

100ps
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EX to 1*
and MEM Other RAW
to 2nd Dependences
5% 20% 5%

10% 10% 10%

Table 12
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Table 13

EX (FW
EX (FW from | from MEM/
EX/MEM only) | WB only)

150 ps

100 ps

120 ps 150 ps 140 ps ' 130 ps

120 ps

100 ps \

Copyright © 2014 Elsevier Inc. All rights reserved.

101



Table 14

add
Tw
Tw
or
SW

P
,4(r5)
Q2
3
JOIErS)

r3
2

r3

r2..rl

s, r3
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W rd..00rl)
labell: beq r2,r0,7abel2 # not taken once, then taken
Tw r3,0(r2)
beq r3,r0,1abell # taken
add rl,r3,rl
lTabel2: sw rl1,0(r2)

Table 15
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Table 16

_Rlype | BEQ | WP | W | SwW__

40%

25% 5%  25%

5%
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Table 17

Always-Taken | Always-Not-Taken [  2-Bit |

45%

55%

85%
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Table 18

BNE R1, R2, Label

LW R1, O(R1)
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Table 19

R10, R11, R12
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| kMem | 1Register Read | Register Write | D-Mem Read

140p)J 70pJ 60pJ 140p)J 120p)

Table 20
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" iMem | Control | RegisterReadorWrits| ALU | D-Mem Read or Write

200ps 150ps 90ps 90ps 250ps

Table 21
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