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Abstract

We describe several programs working with 1201x1201 gridded (array) terrain elevation data:
determining the viewshed of an observer, and the visibility indices of all points, converting from
a grid to a TIN, losslessly and lossily compressing a grid, and interpolating from contours to a
grid. The intent is to integrate these, and new, programs, into a test suite the better to understand
hypsography.
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Introduction

Hypsographic (elevation) data can be represented in various formats, including Triangulated Irregular Networks
(TINs), grids or arrays, and contour lines. The various formats compete on factors such as complexity, size, and
accuracy; it is not clear which wil l eventually dominate. Since data may often be available in only one format, there
is a need for conversion algorithms. Since a conversion is generall y only approximate, there is a need for a measure
of goodness. Altho the simplest criterion is the root-mean-square (RMS) error of the approximation, more
sophisticated criteria, such as the effect on important cartographic properties such as visibil ity and drainage would
be more useful.

Many (but not all) of the techniques described here are based upon classic ideas, known for decades. However,
useful new techniques and packages from Mathematics and Computer Science are now available, such as multigrids
and Matlab. This makes old ideas, such as directly solving a heat-flow (Laplacian) partial differential equation on a
large grid, feasible for the first time. Also, larger datasets raise new special cases. Finall y, faster and larger hardware
allows new implementation techniques, e.g., a program with arrays of 10,000,000 elements is now routine.

We try to use general purpose data structures and algorithms, which are attractive because they have benefitted from



the larger community effort devoted to improving them. This is analogous to the argument for using Open Source
Software instead of proprietary packages. Notable commerical failures of special-purpose HW and SW include: Lisp
machines, floating point processors, database engines, special graphics engines, and most parallel machines. Finally,
careful algorithm implementation helps to keep the code small and fast. The following sections will describe the
various components of our terrain elevation research program.

Conversion from DEM to TIN

Various programs for extracting a Triangulated Irregular Network from a set of elevation points exist (altho some
have been demonstrated only on toy datasets); perhaps the first was Franklin (1973). A regular grid of data is
somewhat harder to process than a random array of points because of various degeneracies such as the most deviant
point in a triangle being on an edge, causing one of the three new triangles to degenerate to a line segment. Our
program, Franklin (1994), can process a complete, 1201x1201 level-1 DEM, producing 200,000 triangles.

This conversion process also shows the diff iculty of predicting the behavior of even a simple idea. One might expect
that splitting a triangle into three smaller triangles, at its worst point, reduces the maximum deviation. However, as
various researchers have observed, sometimes the maximum deviation doubles. Altho unexpected, this isn't a
problem since when the new worst triangle is split, the max deviation drops dramaticall y.

Visibility

Consider the elevation of a region of terrain, together with an observer and target(s). Can the observer see the target?
What targets can the observer see? Where are the best places for the observer? We describe some existing programs
to answer these questions, and then propose future work. This is based on the PhD work of Ray (1994). For more
detail s, see Franklin & Ray (1994). All these programs are very eff icient on large databases.

Viewshed

Program viewshed finds the viewshed, or visibility polygon, or the set of points in the terrain that can be seen by a
given observer who may be a specified height above the surface. Although a viewshed is defined only for some
target height, viewshed also computes the minimum visible elevation, or the lowest height at the point that is
visible by the observer, of every point in the terrain.

Viewshed operates by working out from the observer in square rings. The iteration invariant, which is known for
each point of one ring before the next ring is computed, is the minimum elevation above that point that is visible. If
the point is visible, then that minimum is zero. Note that these minimum visible elevations for a ring encapsulate
most of the relevant terrain elevation information for points inside the ring. Once a ring is computed the interior
points wil l not be considered again. To compute the minimum visible elevation for a target point in the next ring out,
a line of sight (LOS) is drawn from the observer to the target point. This LOS wil l pass between two adjacent points
in the adjacent inside ring. The LOS is made to pass between these points at the minimum visible elevation. Then,
its elevation at the target becomes the minimum visible elevation of the target.

Since it is impossible for one elevation post to completely represent the elevation throughout a square of terrain, and
impossible for two posts to represent the elevation along the whole line segment between them, thru which the LOS
is passing, some approximation is required. This can be biased as desired. The LOS may be made to pass between
the two adjacent points at an elevation linearly interpolated from its relative distance between them, or at the greater
of their two elevations, or at the lesser elevation. The first method (interpolation) is perhaps the most accurate,
although it has an subtle uncertainty that grows with the ring size. The second (max) biases the minimum visible
elevations on the high side, while the third (min) biases the minimum visible elevations in the low direction. This
means that for a given target elevation, we can classify each point in the terrain thus:

1. target points that are almost certainly hidden, since the minimum visible elevation calculated with the min
approximation is above the target elevation.



2. target points that are probably hidden since the target elevation is below the interpolated minimum visible
elevation.

3. target points that are probably visible since the target elevation is above the interpolated minimum visible
elevation.

4. target points that are almost certainly visible since the target elevation is above the minimum visible
elevation calculated with the max approximation.

Below is a sample of viewshed's operating on a 300x300 piece of the Lake Champlain West level-1 USGS DEM.
Elevation is indicated by color (or shades of gray), as shown on the scale along the right side. The observer was
located at the highest point in the terrain, and about 15 meters above ground level. The target was assumed to be
about 15 meters up, the visibilit y was calculated 3 ways as described above, and the terrain was shaded accordingly.
Unshaded means almost certainly visible, lightly shaded: probably visible, darkly shaded: probably hidden, and
black: almost certainly hidden. Viewshed is extremely fast, all this took about 1 CPU second total on a 75MHz
Pentium running Linux.

Figure 1. Sample viewshed output

The figure shows that the visibil ity status of over half of the points in this example is actually uncertain. That is
quite unexpected. If this uncertainty is intrinsic to the data, rather than an artifact of our approximate algorithm, then
we have an important subject for future research.

Vix

Vix finds the visibility index, or the area of the viewshed, of every point in the terrain. We do not find each point's
explicit viewshed, but rather use sampling techniques to estimate its area. For each observer, perhaps 32 rays are
fired out at equally spaced angles towards the edge of the terrain. Along each ray, a subset of the points are selected,
and a one-dimensional l ine-of-sight algorithm is executed on them, to compute the number of visible points, in time
linear in the number of points tested. The visibility index of the observer is the fraction of tested points that are
visible.

Vix then repeats this process for all N2 possible observers. Following are two images: some sample terrain from
South Korea, and the visibil ity indices of every point, with bright points being more visible.



Figure 2. Sample Terrain Figure 3. Visibility Indices

Some notable points are these: The north-south ridge in the center is sharpened. The lowest region is the water at the
south near the west, but its visibility indices are surprisingly high. In contrast, the high mountainous region in the
north center is not so visible. There is often little correlation between elevation and visibil ity index; for the above
data, the correlation coefficient is very slightly negative.

Note that our algorithm is performing a classic statistical sampling and estimation. We estimate the fraction of all
the points that are visible by testing a subset. Assuming that our sampling is uncorrelated with the points' visibilit y,
computing the standard deviation in our estimate is easy. A check is also possible by dividing the rays alternately
into two groups, computing the visibilit y index separately for each group, and measuring the significance of the
difference in the means with a T-test. Vix could be extended to use this adaptively so to fire only the minumum
necessary number of rays.

Siting Observers

Programs viewshed and vix may be used to find a set of observers that jointly can see every point as follows.
Use vix to li st all the points by visibilit y index, and hence, to find the most visible point. Place the first observer,
O1, there. Use viewshed to find the points that O1 cannot see. Filter the sorted li st of points to delete points that O1

can see. Find the most visible point that O1 cannot see; that is the second observer, O2. Repeat until the set of
observers can see every point.

Comparison to Other Visibility Programs

The programs described here use gridded elevation data. Some others use a Triangulated Irregular Network (TIN).
Although a TIN requires fewer triangles than a grid requires points, each triangle must know its neighbors, which
adds to the data size (if this is stored), or to the time (if this is computed from the points assuming a Delauney
triangulation). The algorithms are also more complex, and some TIN programs have been demonstrated only on toy
datasets with a few thousand triangles. Admitting that this contradicts our earlier observations concerning special
versus general purpose techniques, here we use algorithms speciali zed to the visibilit y problem, instead of slower,
general, techniques such as neural nets or simulated annealing.

DEM Compression

For detail s on our compression techniques for DEMS, see Franklin & Said (1996). Here are some new results, on a
level-2 DEM of Bountiful Utah. The standard deviation of the elevations is 1096 meters, which would be the RMS
error if the file was compressed down to two bytes long (to list only the mean value). This also implies that about 11



bits per point would be needed w/o compression.

Our compression method is Said and Pearlman's wavelet program, progcode, Said & Pearlman (1993). Lossless
compression takes 5.234 bits per point (bpp) on this file. Compression down to 1.0, 0.1, 0.03, and 0.01 BPP has
RMS errors of 6.0, 52, 148, and 535 meters, respectively.

Here is the original surface, and the compression to 0.1 BPP.

Figure 4. Original Bountiful Terrain Figure 5. Lossily Compressed to 0.1 BPP

The approximation shows the general aspect of the surface even down at 0.1 BPP, which is a compression by a
factor of at least 100 compared to the original data. At 0.03 BPP, the original surface is still discernable, but serious
artifacts appear.

Interpolating from Contours to DEM

Interpolating from contour lines to an elevation array is a classic problem in computational cartography. First, there
are the traditional heuristics, such as extending straight lines in eight directions from the test point until they
intersect eight contour lines, then interpolating with a weighted average, as described in Douglas (1983) and, later,
Jones, el al (1986). Similar inverse-distance weighting methods are shown in Watson (1992) and Heine (1986), often
using natural neighbors found by Sibson (1981). These methods can work if the contours are not kidney-shaped.
However, an artifact appears when interpolating a concentric set of circular contour lines, representing a cone. Since
the outer contour line are longer than the inner ones, the averaging rule causes the surface between two contour lines
to droop, as if pulled down by gravity, in an unaceptable scalloping or terracing effect.

Partial differential equations (PDEs) can be used to model a surface subject to certain constraints. Good cartographic
introductions to PDEs for interpolation are Tobler (1979, 1986). One simple PDE is the Laplacian, or heat-flow
equation, zxx+zyy = 0, where zxx = d2z/dx2 etc. The relevance to heat-flow is that, if we map elevations to
temperatures, assume that the contour lines are fixed at known temperatures, and assume that the surface conducts
heat uniformly, then each point on the surface between the contour lines will eventually equili brate to some
temperature, which we map back to elevation. If this equation is solved by iteration on a grid, then the elevation of
each point in the array, whose height is not already fixed, is the average of its four neighbors: 4zij = zi-1,j + zi+1,j + zi,j-

1 + zi,j+1. However, the Laplacian also demonstrates the terracing artifact.

The more complicated thin plate model minimizes total curvature, similar to fitting a thin sheet of metal to fixed
points, while minimizing the energy of bending. The partial differential equation is: zxx

2 + 2zxy
2 + zyy

2 = 0; while the
corresponding iterative equation on a grid is: 20zij = 8(zi-1,j + zi+1,j + zi,j-1 + zi,j+1) - 2(zi-1,j-1+zi-1,j+1+zi+1,j-1+zi+1,j+1) - (zi-

2,j + zi+2,j + zi,j-2 + zi,j+2) With this equation, information flows across the contour lines, which is desirable. This
method produces less terracing, but instead demonstrates a ringing effect, similar to a Gibbs phenomenon when a
square wave curve is being approximated by a Fourier series. Intuiti vely, the surface tries so hard to minimize the
curvature, that, when the data is too nonsmooth, the surface has synthetic oscill ations. For example, an interpolation
of the desert floor next to a mesa would have this undesirable artifact.



Until a useful formal model of terrain elevation is available, the desirable characteristics of an interpolation or
approximation algorithm are not obvious, since different attributes confli ct with each other. For example, since
geological features are stretched and distorted, an interpolation that is invariant with respect to nonuniform scaling
in x and y might be desirable. However, this is not compatible with any algorithm using nearest points, such as a
Voronoi method. Even allowing uniform scaling is incompatible with any algorithm containing an embedded
constant distance, such as kriging. Again, second-degree continuity might be a desirable attribute, except that the
real world is often not continuous at all. Forcing high-order continuity here wil l only create false ripples.

The conclusion is that visual inspection may be the best judge of an interpolation or approximation method. We may
not be able to formalize it, but we know a good surface when we see one. In particular, we can easily see non-local
artifacts, such as the terracing.

If the input data is not exact, then interpolating it, exactly, may be the wrong operation. Instead, an approximate
surface, which passes near the data, might be preferable, since it can have other desirable properties, such as
virtually eliminating ringing. This can be realized by assuming that there are springs between the data points and the
surface, and minimizing the total energy of the springs and the curvature, as done by Terzopoulos (1988).
Unfortunately, the terracing is only reduced.

Explicitly solving a PDE on an NxN grid, without utilizing the system's sparsity, takes time N6, which is infeasible
for large N. Sparse system solvers and iterative methods are more practical; their time is proportional to the desired
accuracy. The best current iterative method is the multigrid. It finds an approximate solution on a coarse grid, then
improves the solution on a finer grid, with periodic recourse back to the coarser grid for speed. The multigrid
technique can solve systems with more than 10000x10000 cell s. Terzopoulos (1983) used this method for solving
the thin-plate equation. Douglas (1997) points to tutorials, bibliographies, and software on multigrids.

Voronoi interpolation of the data points is a completely different method, Gold & Roos (1994). Here, a Voronoi
diagram is formed from the data points. The test point is inserted into the diagram, and the areas its Voronoi polygon
steals from its neighbors are used to weight the neighbors' elevations. A Hermite transformation of the weights may
be used to increase the continuity. Voronoi interpolation solves the problem of artifacts such as surface, slope, or
curvatures discontinuities, slope or curvature discontinuities, and and local elevation extrema. Another promising
idea is to use terrain-specific criteria and geomorphological rules to fit a Bezier surface, Schneider (1998). Carrara et
al (1997) find that TIN and grid interpolation methods produce surfaces reflecting the ground morphology.

Triangulating the points into a Triangulated Irregular Network, perhaps with a Delauney triangulation, is a related
method, Garcia (1992). Any interpolation method, either bilinear or a higher order spline, may be used inside each
triangle. However, sometimes a triangle wil l have all three vertices on the same contour, causing it to be horizontal,
which is undesirable. Christensen (1987) triangulates closed contour lines to create new elevation lines between
existing contours.

Because linear interpolation may result in surfaces with flat areas, Watson (1992) blends the technique with a
gradient estimation. Huber (1995) detects features such as ridges and valleys, interpolates new elevations on them,
and then applies any other method to this enhanced set. This considerably reduces artifacts.

Generally, the existing methods have one or more of the following limits. They are often tested only on synthetic,
small, datasets. They may require unbroken contours, or may require that there not be too many contours. They may
generate triangles that are be horizontal, or long & thin, flat peaks, and terraces and ringing. Desirable properties
include local control, variation minimization, interpolation, conformal, smooth peaks and valleys inside innermost
contours, and no visible evidence in the surface of where the original contours were.

The new methods described here are based on the PhD work of Gousie (1998).

Intermediate Contours

Our first new method repeatedly interpolates new contour lines between the original ones, somewhat similar to the
medial axis. If two adjacent contour lines are: A, at elevation a, and B, at b, then we interpolate at elevation (a+b)
thus. Pick a point on A. Find the closest point on B (approximating the gradient). The midpoint of AB is on the
desired intermediate contour. Our contrarian philosophy is that we don't find the elevation at certain points, but



rather find points with a certain elevation. The Maximum Intermediate Contours (MIC) method iterates the process,
fill ing ever-finer contours. Alternatively, we can find intermediate contours one or more times, then do a thin-plate,
Hermite-spline the peaks, inverse-distance weight other small gaps, and Gaussian-smooth the surface.

Gradient Lines

This method answers the problem of the generated surfaces terracing between contour lines by importing the idea of
lofting from CAGD. It proceeds as follows. Generate a first version of a surface by any method. Find its gradient
lines. Note that, on each gradient line, we know only the elevations where it crosses the contours. Interpolate its
elevations in-between. This process smooths the surface, while keeping the interpolation. Springs may be added to
any method, producing an approximation.

The following figures show three approximation methods applied to a 900x900 piece of the Crater Lake DEM. The
first shows the original contour lines, which are seen to be separated by many pixels, which makes the process
harder. The next three show the classic thin plate, and our intermediate contour and gradient line techniques. We see
that both our techniques are much smoother than the thin plate, and that the gradient method is best. Our longer
papers quantify this, and show more examples.

Figure 6. Crater Lake: Original Contours
Figure 7. Thin Plate Approx

Figure 8. Intermediate Contour Approx Figure 9. Gradient Line Approx



Overdetermined Laplacian Solution

The problem with many existing methods is that no information flows across the contours. This causes terracing.
Our solution is to make the known data points also be the average of their neighbors. The method is to assume that
there are N2 unknowns; i.e., even the known points are unknown. There are now two types of equations. First, for all
points: 4zij = zi-1,j + zi+1,j + zi,j-1 + zi,j+1 Second, for the known points, we make an equation that they are equal to
their known values: zij = hij Since there are now more equations than unknowns, none of the equations wil l be
satisfied exactly. That is, no points wil l be exactly the average of their neighbors, and the known points wil l not be
exactly their known values. If there are K points whose elevations we know, then there are N2+K equations for the
N2 unknowns.

We then do a least-squares solution in Matlab, to give an approximate solution, rather than an interpolation. With a
least-squares solution, scaling an equation up makes it more important. Let R be the relative weight of the average-
value equations compared to the others. A lower R wil l cause a more accurate surface, while a higher R will cause a
smoother surface. A little inaccuracy goes a long way towards smoothing the surface.

Here is a test case constructed to stress any contour interpolation algorithm. It consists of four concentric squares, at
a distance of five from each other. The squares' sharp corners facili tate artifacts, while the large gap between
adjacent contours allows interpolated surfaces to droop or terrace. Our intuition would desire that a square pyramid
with triangular sides result. However, few algorithms are likely to produce such a surface with discontinuities in the
slope.

For the three weights of 0.1, 1.0, and 3.0, the maximum errors at the known points are 0.27%, 5.5%, and 12%,
respectively, while the average errors are 0.01%, 0.6%, and 2.7%, respectively. That is, by allowing the elevations
of known contour points to vary by an average of 3%, we can fit a quite smooth surface to the nested squares.
Considering the accuracy standards of most hypsographic data, that may be acceptable. The next figure shows the
original square contours, and the smoothly approximated surface with R=3.

Figure 10. Overdetermined Laplacian PDE

Note that our overdetermined solution concept is quite different from putting springs on the data points. That is also
an approximation, but it does not try to make the data points to be the average of their neighbors. Absent that, it is
impossible to make the surface not show the original contours.

Various extensions of the overdetermined solution technique are possible. We might calculate the error on each data
point, then for the less-accurate points, increase their weights and re-solve. This reduces the max absolute error, but
increases the mean. The resulting surface is slightly less smooth. Alternatively, we might guess that the points with
large errors represent breaks in the surface slope. Then an reasonable response might be to reduce their weights and
re-solve. We have tested the overdetermined solution technique on grids of up to 257x257 points, and are working
on larger cases.



Future Plans

Our proposed future work is follows. After adding splining to our TIN, and implementing a drainage basin routine,
combine these various projects into a test suite, and test how well whether other terrain properties such as drainage
patterns are preserved by these transformations. The goal is better to understand terrain with a view to formalizing a
model of elevation. This flow chart shows how the various parts can fit together.

Figure 11. Relations Among Our Research Components
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