
COMP 218 Data Structures Fall 2024

Assignment DS2

Due Date: September 24

Purpose

This project brings together arrays, classes, methods, and an inheritance hierarchy. You will also
use real-world data to create some interesting map visualizations.

Problem

GPS, Google Earth, and other applications display terrain, using different colors to represent
elevation. However, sometimes data is missing, and the terrain must be interpolated before it
can be viewed. Furthermore, such visualizations can use various file formats. In this project,
you will create colorful maps and interpolate areas where the data is incomplete. You will read
a common data file format for elevation values: DEM ASCII grid format. This human-readable
format stores a grid of floating point elevation values by rows. See “Esri grid” on Wikipedia for
more info. You will use two different data file formats to store and visualize real terrain (PGM
and PPM formats). Data from these file formats will be stored in an inheritance hierarchy, shown
below:

DEM Grid

PPM PGM

Input

Your program should repeatedly offer the user a menu similar to the following:

Menu ~~~~

cg - (C)reate new P(G)M object

cp - (C)reate new P(P)M object

dr - (D)isplay number of (r)ows

dc - (D)isplay number of (c)olumns

dh - (D)isplay (h)ighest elevation

dl - (D)isplay (l)owest elevation

wg - (W)rite P(G)M to output file

wp - (W)rite P(P)M to output file

qt - (Q)ui(t)

Elaboration:

• cg - prompt the user for a filename in DEM ASCII grid format (.grd) and create a PGM
object. First the data for the DEM should be read, stored, and interpolated (if needed).
Then a PGM should be computed in gray scale, from 50 (lowest elevation) to 255 (highest
elevation).

• cp - prompt the user for a filename in DEM ASCII grid format (.grd) and create a PPM
object. First the data for the DEM should be read, stored, and interpolated (if needed).
Then a PPM should be computed in color, following a green to yellow gradient; that is, the
lowest elevations should be in dark green, moving to light green, then yellow. See the Google
for examples.

1



COMP 218 Data Structures Fall 2024

• dr/dc - display the number of rows/columns. Do this in an orderly, aligned way with clear
labels.

• dh/dl - display the highest/lowest elevation in an orderly, aligned way with clear labels.

• wg/wp - prompt for the output file name and write out the appropriate PGM or PPM file.

You may assume the user will input the correct data; no error checking is needed, except for the
input menu option and opening a file. For this former, an error message should be displayed and
the program should continue, redisplay the menu, and offer the user another chance to input a
valid option. For the latter, the program should check that a file is valid before trying to read the
contents. If a file is not valid, then an error message should be displayed and the menu redisplayed,
as above.

Careful thinking about this shows that you can have two different file formats active at the same
time, but only one of each; that is, the user can create a PGM from one set of data and another
PPM from another set of data, but if the user then creates another PPM, for example, the previous
one is replaced by the new data.

Output

The program should display the menu and input messages, as appropriate. The program should
write the desired files when the ‘w’ option is chosen. The user then has to look at the output using
the viewer on their particular computer/operating system.

Below is an example of a PGM of Mt. Washington, NH, created from the DEM ASCII grid file
tucks.grd.

Specifics

• You must use the hierarchy as described above.

• Only those things specific to a class should be done by methods in that class. Reuse code
from the base class as much as possible.

2



COMP 218 Data Structures Fall 2024

• How to interpolate data will be discussed in class.

• The number and complexity of methods is up to you. But as a general rule, a method should
be relatively short – less then approximately 16 lines. If a method gets longer than that, you
should probably split the problem into several methods.

• Include the usual comments as was done in the previous project.

• The base class should process only DEMs in grid format. The base class does now “know”
about PGM or PPM files, so do not include color or other information in the base class.

Notes

Don’t wait to start work on this. Projects take longer to complete than you might realize. As
always, work on one aspect at a time to minimize the number of problems you encounter.

You should test with multiple data sets and different starting positions. Don’t start testing with
the large files available online; create some small files that allow you to better debug.

Be sure your program does not crash when valid input is entered.

To submit, create a header file (.h) file that contains all of your class specifications and your
introductory comment. Create an implementation (.cpp) file that contains all of the methods.
Finally, you should have a third .cpp file that contains your main(). Zip all of this together; name
this file first initial+last nameDS2.zip, as in mgousieDS2.zip. Submit the file through Canvas
before the due date. Submit hard copy of your code in class the next day. Write (or type) and
sign the Honor Code on the hard copy.

Climb the mountains and get their good tidings.

Nature’s peace will flow into you as sunshine into trees.

– John Muir

3


