
diviText: Visualizing Text Segmentation for Text Mining

BY

Amos Chapman Jones

A Study

Presented to the Faculty

of

Wheaton College

in Partial Ful�llment of the Requirements

for

Graduation with Departmental Honors

in Computer Science

Norton, Massachusetts

May 2011

Contents

1 Introduction 4
1.1 Guide . 5

2 Literature Review 6
2.1 Data Mining . 6

2.1.1 Text Mining . 7
2.1.2 Techniques for Clustering and Classifying Texts 12

2.2 Common Text Mining Tools . 15
2.2.1 Meandre 1.4.8 . 15
2.2.2 WordSmith 5.0 . 17
2.2.3 MALLET . 18
2.2.4 NLTK . 21
2.2.5 GATE . 23
2.2.6 R . 26

3 Methods and System Engineering 30
3.1 Detailed Functional Speci�cation . 30

3.1.1 Goals . 30
3.1.2 User Interface . 31
3.1.3 Data: Spaces Between Words 37

3.2 Black Box: The Public API . 38
3.2.1 CutterPanel Module . 38
3.2.2 PHP . 40

3.3 White Box: Internal Components . 41
3.3.1 JavaScript and ExtJS 3.3.1 . 41
3.3.2 Hypertext Preprocessor (PHP) 43
3.3.3 Error Handling . 47

3.4 Code Walk-Through . 49
3.4.1 Page Load . 49
3.4.2 Center: CutterPanel . 54

2

3.4.3 Clicking a Word . 58
3.4.4 Automatic Cutters . 60
3.4.5 Text Upload . 61
3.4.6 Text Download . 64
3.4.7 Loading the Text Manager . 65
3.4.8 Clicking in Text Manager . 68
3.4.9 Save Chunkset . 69

4 Use Cases 74
4.1 Toy Example . 74

4.1.1 Using Visual Cutter . 76
4.1.2 Using Simple Cutter . 79
4.1.3 Using Advanced Cutter . 79

4.2 Real-World Examples . 81
4.2.1 Beowulf in Fitts . 81
4.2.2 Other Examples . 82

5 Conclusions 83
5.1 Future Work . 83

5.1.1 Functionality . 83
5.1.2 Usability . 84
5.1.3 Stability . 84

A Clustering Using Other Tools 86
A.1 Meandre . 87
A.2 Python: NLTK and SciPy . 89
A.3 R . 89

A.3.1 R using RPy . 91

B Licensing and Source Code 94
B.1 Licensing . 94
B.2 Source Code . 95

Bibliography 96

3

Chapter 1

Introduction

Quantitative experiments in text mining often require the segmentation of texts into
smaller units. Text segmentation is the process of dividing text into smaller pieces.
It can be done by hand in a text editor, but this is time consuming and error prone
especially when working with large corpora. diviText is a tool to help scholars segment
text in an e�cient and accurate way.

In research at Wheaton College on the Anglo-Saxon corpus, automated tools have
performed the task of text segmentation. The original incarnation of this tool, written
in the summer of 2008 was a Perl script that was highly speci�c to the Anglo-Saxon
corpus. This script runs on the command-line where segmentation parameters are
speci�ed in the script's argument list. Texts to be segmented had to be placed in
a speci�c folder. The arguments segmented the text based on a speci�ed segment
length. This served its purpose but the process was slow, the algorithm ine�cient,
it required a facility with command-line arguments, and targeted only Anglo-Saxon
texts.

A second, and more general, version of the script was written for use over the web
in the summer of 2010. This provided text boxes for user input and a �le upload �eld.
This worked well and was far more e�cient than the original script. It introduced
a di�erent method to segment texts based on a set number of segments. But this
prototype provided nothing more than a simple user interface.

The need for an e�cient and easy to use tool for text segmentation led to the
creation of diviText. diviText is the next incarnation of text segmentation tools.
It provides a graphical segmentation technique where the user can visualize their
segments before �nalizing the �nal placement of breakpoints between segments, or
chunks. The user can upload many texts and segment each di�erently, multiple times.

Because text segmentation occurs within a larger context of the computational
analysis of texts, this thesis covers research regarding the area of text mining and
some tools commonly employed when analyzing texts and corpora. Later sections

4

explain diviText, its functionality, and systems design.

1.1 Guide

This section serves as a guide to the rest of this thesis.
Chapter 2, Literature Review, provides a look at the topic of �Data Mining,�

speci�cally �Text Mining� (Section 2.1). Section 2.2 covers tools commonly employed
when text mining with a focus on their ability to load texts and perform clustering
and/or classi�cation methods.1

Chapter 3, Methods and System Engineering, provides an in-depth look at divi-
Text. Section 3.1 outlines diviText's functionality. Section 3.2 brie�y explains a few
key software methods in diviText. Section 3.3 looks at the di�erent technologies used
in diviText and provides some vocabulary used with each technology to make the
following sections easier to understand. This section sets up Section 3.4 which walks
the reader through much of the diviText code with associated code snippets.

Chapter 4, Use Cases, provides examples of what diviText can do through a few
use-cases. Section 4.1 shows o� diviText functionalities through a toy example, and
Section 4.2 looks at a few real-life use-cases.

Chapter 5, Conclusions, reviews how diviText can be used and could be expanded
upon in the future.

Appendix A, Clustering Using Other Tools, provides helpful examples of how to
use some of the tools referenced in Section 2.2 to perform cluster analyses on a toy
dataset.

Appendix B, Licensing and Source Code, provides a few details regarding licensing
(Section B.1) and how to obtain the diviText source code (Section B.2).

1Unsupervised (cluster analysis) and supervised (classi�cation) machine learning methods are
beyond the scope of this thesis, but are imporatnt to cover here to set the context for diviText.

5

Chapter 2

Literature Review

Information and knowledge describe patterns seen in the world. Patterns are of
interest in a multitude of academic �elds and business opportunities. Sociologists look
for patterns, and changes in patterns, to describe society. Physicists use mathematical
models to describe patterns in the universe. Statisticians look for patterns, and
anomalies in expected patterns, to describe trends. Google's business model depends
on �nding patterns in text, images, and e-mail to serve the best and most relevant
advertisements to web searchers. Facebook collects and �nds patterns in people's
social graphs to sell to advertisers like Google. Amazon �nds patterns in consumer
buying habits to present shoppers with relevant products in the hopes that shoppers
will buy more. Market analysts look for patterns in the stock market to try and
maximize return on investment for investors.

Each day, more information is created and collected. This presents opportunities
for scholarship and business. But looking for patterns in information is not trivial
and more information presents additional di�culties. Computers are a great boon to
apply in this area, especially computer software that implements algorithms to aid in
pattern detection.

2.1 Data Mining

Data mining is the process of searching for patterns using computing tools. Computers
require a specially coded type of information. Data are coded as strings of zeros
and ones, or binary data. Binary data is the operational language of all digital
computers organized into patterns interpretable in ways that make the computer
work. Quantitative and qualitative information can be stored in computers as data
in some pattern of zeros and ones. This data can now be �mined�.

Data mining is quite like the process of mining for gold in the earth. First prospect-
ing occurs to �nd where gold resides in the ground. Gold ore is found in hard rock

6

or loose gold found in rivers. Depending on where gold is found, speci�c instruments
must be designed to extract the gold. Drills are used to extract gold ore. Pans,
dredgers and sluice boxes are used to expose loose gold. Gold ore is then smelted into
gold ingots which can be sold or locked away in places like Fort Knox. Loose gold
can be sold directly to buyers.

Data is �rst prospected for its applicability to the problem. Is it the data equiv-
alent of gold or calcium? Depending on the type of data, speci�c instruments and
methods are developed to extract the useful data. Streaming video requires vastly
di�erent analysis than thousand year-old texts. In the case of business, the �ndings in
the data can be sold or kept proprietary. In academia, �ndings will likely be published
in journals.

No matter the �eld of interest or purpose when data mining, similar approaches are
employed. Kononenko and Kukar (2007) show one �interactive and iterative� standard
process, CRISP-DM (CRoss Industry Standard Process for Data Mining), that can be
applied to the creation and life-cycle of a data mining project for business. The idea is
that the problem of data mining is broken into smaller steps: problem understanding,
data understanding, data preparation, data modeling, evaluation, and deployment.
Problem and data understanding give researchers a place to start. How is the problem
de�ned? What data is mostly likely to produce quality results? How does changing
the data a�ect the problem? These feed into the steps of data preparation and
modeling. Data must be prepared and stored. Models are created to organize, classify,
and analyze the data. Models are evaluated for accuracy and quality of results.
Models are then then deployed and fed back into the problem and data understanding
processes. Good models and data can be re�ned iteratively by researchers. The details
of each step vary depending on the problem and a variety of techniques and analysis
algorithms are employed, some of which are described in Section 2.1.2.

2.1.1 Text Mining

Text mining is a subset of data mining focusing primarily on textual and natural
language data. Text mining presents unique challenges due to how human language
has developed. Human languages tend to be ambiguous and largely unstructured.
Meaning is placed onto words and phrases by language structure, syntax, and vocal
stress not obvious to computers and non-native speakers.

Jurafsky and Martin (2009) cite many di�erent types of ambiguity with the one
sentence, I made her duck. Word-sense ambiguity arises from words with multiple
meanings or interpretations given a context. For instance, the word made could
refer to the act of cooking the duck or the act of creating the duck, maybe out of
plastic. Syntactic ambiguity is when two words could belong to the same sentence
structure or be separate. Her duck could refer to a waterfowl belonging to a girl

7

(separate sentence entities) or refer to the act of making the girl lower herself in a
rapid motion. Other ambiguities include the ability to di�erentiate between statement
or question, determining the use of the word in a sentence, or determining the actual
pronunciation of a word.

2.1.1.1 Corpora

Texts are a static form of data that appears in many ways, from hand written
manuscripts of the Middle Ages and personal letters, to published books, magazine
articles and Internet message board rants. Works are categorized by some method,
be it logically by author, language or topic or subjectively by somebody's opinion of
what is a good story.

A large collection of these categorized works is called a corpus. Some large corpora
frequently cited include the University of Toronto's Dictionary of Old English (DOE)
used by Anglo-Saxon scholars containing over 2 million words (Drout et al., 2011;
Healey et al., 2004), the British National Corpus (BNC) that includes many texts,
news articles and spoken word conversations with over 100 million words (BNC, 2007);
and Mark Davies' corpora, the Corpus of Contemporary American English (COCA)
and Corpus of Historical American English (COHA) with over 400 million words each
(Davies, 2008b; 2010).

Many digitized corpora have online tools to search through texts, retrieve word
frequencies, and more. For example, subscribing customers to the Dictionary of Old
English can search for word and phrases as well as variants through the entire Old
English corpus. The tools also provide full bibliographic information for all their texts
(Healey et al., 2009).

Using the same starting corpus, a collection of tools provided by the Wheaton
College Lexomics Group allows users to download word counts for all poetry and prose
texts, manuscripts and genres (poetry and prose) in the Anglo-Saxon corpus. Users
can build their own collection of word counts for texts beyond traditional manuscript
boundaries using a Virtual Manuscript tool. DOE subscribers can use a suite of
Perl scripts to count words and reproduce the data found on the Lexomics website
(LeBlanc et al., 2010).

For the BNC, COCA, COHA, and other corpora, Davies provides an extensive
database lookup tool to quickly search through the millions of words and phrases.
The frequencies and context of every instance of searched words and phrases in the
corpus is available very quickly using a modi�ed relational database (Davies, 2008a;
2009).

Encoding Each of these corpora must be encoded in some format to store on a com-
puter. The simplest encoding is raw text, usually using ASCII (American Standard

8

Code for Information Interchange) or Unicode, a text standard for storing many non-
Roman characters. Texts stored as raw text, are just the words of the text without
any special formatting or stylizing information or editorial notes. Project Gutenberg
cites the advantages of this form, that, simple, raw text and ASCII in particular, can
be read on nearly every computer built in the last thirty years, and will be readable
by all computers for the foreseeable future (Hart, 2011).

The Anglo-Saxon Corpus is stored using Standard Generalized Markup Language
(SGML) and includes metadata (Healey et al., 2004). Using SGML, it is possible
with proper tagging to keep track of line numbers in a poem or store the text's
author without interfering with the author's words.

More advanced methods shown by Davies (2009) store all 7 word strings (7-grams)
appearing in texts with their part-of-speech for extremely fast lookup of phrases using
database queries. Information pertaining to individual texts are stored in other tables
in the database.

Metadata An increasing number of corpora are digitized with associated informa-
tion pertaining to the nature or source of the texts. This metadata is not necessarily
part of the body of the text, but may contain useful information regarding publication
date, author, genre, etc. Information about individual words may be stored such as
the word's part-of-speech or de�nition.

There are many ways to store metadata, similar to storing texts themselves, rang-
ing from the simplistic to well de�ned standards. Simply, metadata can be stored
in an accompanying �le, in the same �le as the text, or in a more sophisticated and
scalable approach, such as stored externally in a database that references the text.

Due to standards like the Text Encoding Initiative (TEI), texts and metadata are
increasingly likely to be stored together in the same �le (TEI Consortium). Using
Extensible Markup Language (XML), texts are said to be �marked up� or �tagged�
to include this data in the text itself using delimiters in a tree structure.

This structure has advantages because each word can be tagged and later isolated
with its own part-of-speech tag, lemma, de�nition or more. Tagging with metadata
also facilitates a separation of sections of a text such as the table of contents and
index separated from the main body of text.

2.1.1.2 Word Counts

For computers, even the most neatly organized corpora represent text mining chal-
lenges; words, after all, are still ordered in human order. One way to structure the
data into an algorithmically comprehensible form is to simply count the frequency of
each word. In doing so, a word-list is created that stores word frequencies (Archer,
2009), as shown in Table 2.1.

9

Token Count Token Count Token Count
... caught 3 chain 1

case 5 cauldron 2 chains 1
cat 37 cause 3 chair 1
catch 4 caused 2 chance 4
catching 2 cautiously 3 chanced 1
caterpillar 28 ceiling 1 change 14
cats 13 centre 1 changed 8
cattle 1 certain 3 changes 2

caucus 3 certainly 14
...

total 27,333

Table 2.1: A sample of unique tokens and their raw counts in Lewis Carroll's Alice's Ad-

ventures in Wonderland (Carroll, 1865). There are a total of 27,333 types after removing

punctuation and capitalization.

To count words, texts are tokenized. In this process, word tokens are created to
represent each individual word string by some tokenization algorithm. Just as word
tokens represent each individual word string in a text, word types represent each
unique token in a text. Types can be thought of as the vocabulary of a text (Jurafsky
and Martin, 2009).

Many methods of tokenization create tokens by splitting texts at each space char-
acter but this poses some counting issues. No di�erentiation is made between words
that are logically the same to a human reader, but look di�erent to the computer. For
instance, when naïvely tokenizing, the token for read is di�erent from the token for
Read which is di�erent when the token is immediately followed by punctuation such
as read:. A common solution is to remove all punctuation from the string and to force
case either up or down for each letter, thus collapsing each form of read into the same
token creating a single word type. Another method is to separate the punctuation
from the word string and thus creating tokens for punctuation, which for some types
of analysis is useful.

Relative Frequencies One problem that occurs when raw word counts are used is
that texts become segregated by length rather than content. Longer texts will employ
the same words more frequently than similar short texts. To correct for this, relative
word frequency is used. To calculate relative word frequency, the count of each word
is divided by the total number of words in the text. The result for each word is the
proportion of all words in the text that is that word. The sum of proportions for each
type in a text is 1 and is the reason that relative frequencies normalize texts against

10

Token Proportion Token Proportion Token Proportion
... caught 0.00010975 chain 0.00003658

case 0.00018292 cauldron 0.00007317 chains 0.00003658
cat 0.00135367 cause 0.00010975 chair 0.00003658
catch 0.00014634 caused 0.00007317 chance 0.00014634
catching 0.00007317 cautiously 0.00010975 chanced 0.00003658
caterpillar 0.00102440 ceiling 0.00003658 change 0.00051220
cats 0.00047561 centre 0.00003658 changed 0.00029268
cattle 0.00003658 certain 0.00010975 changes 0.00007317

caucus 0.00010975 certainly 0.00051220
...

total 1

Table 2.2: The same sample of tokens with their relative frequencies in Lewis Carroll's Alice

in Wonderland. Even the most frequent token shown, cat, represents only 0.135% of all word

types in the text.

length. See Table 2.2 for the relative frequencies of the words from Table 2.1.

N-Grams When tokenizing a text, instead of isolating single words, it is possible to
group consecutive words. One word token are called unigrams, two word tokens are
called bigrams, three word tokens are called trigrams, and N word tokens are called
N-grams (Jurafsky and Martin, 2009).

In December 2010, Google released an N-gram viewer using N-grams collected
from over 500 years of scanned books in American and British English, Chinese,
French, German, Hebrew, Spanish, and Russian. When searching for N-grams, users
can compare multiple N-grams and view their popularity over a speci�ed range of
years. In addition to viewing and searching for N-grams, Google provides downloads
for all sets of N-grams (up to 5-grams) (Michel et al., 2010).

Lemmatization Another way to alter the word counting algorithm is to extract
the lemma, or stem, of a word. A lemma is the base of a set of words that have
essentially the same meaning and part-of-speech (Jurafsky and Martin, 2009). By
lemmatizing input text, it is possible to remove attributes like tense, plurality, etc.
from words and create fewer word types. For instance, to any native English speaker,
the words step, steps, and stepped are basically the same, only di�erent in tense. No
simple algorithm can be used to lemmatize, though. The words seek and sought have
the same basic meaning, but are radically di�erent in spelling (Weiss et al., 2005).
Another example given, is the word bored which could be an adjective meaning tired,
or the past tense of the word bore meaning to drill a hole. To date, there are no

11

perfect computational methods for lemmatizing words, especially in English. So a
typical method used to lemmatize, is for human researchers to compile a list of words
and their associated lemma(s) (c.f. Kleinman, 2011).

2.1.2 Techniques for Clustering and Classifying Texts

Machine learning algorithms are often grouped as unsupervised or supervised. Un-
supervised learning places texts into groups after analysis while, supervised learning
requires texts to be partitioned into groups prior to analysis.

While used in, but not limited to text mining, clustering and classifying techniques
use word frequencies of texts in corpora as attributes to describe texts. Each text or
segment of a text is represented by vectors of words and that word's relative frequency.
These vectors of word frequencies can form the basis for clustering and classi�cation
methods. These methods have roots in statistical and probability modeling methods
as do many other analysis techniques.

2.1.2.1 Hierarchical Clustering

One method of unsupervised learning is hierarchical clustering which has two types,
agglomerative (bottom-up) and divisive (top-down). The result of a hierarchical
cluster analysis is a set of groups one of which each text in the analysis belongs.

Agglomerative Clustering In agglomerative clustering, initially, each text (vec-
tor of word counts) forms its own group. Using a metric, the �distances� between
texts are calculated. This metric could be Euclidean distance, Manhattan distance,
angular separation or one of many other distance metrics. Using the computed dis-
tances between vectors of word counts, the closest two texts are grouped, or clustered
together into a clade. The distance from this new cluster to all other texts is then
recalculated. Using another metric, this cluster, or any text(s) inside of the cluster,
new distances are calculated. Texts and clusters are then compared for similarity, and
clustering continues until all texts belong to a single clade (Kononenko and Kukar,
2007; Kraus, 2010).

Divisive Clustering Divisive clustering is basically the opposite of agglomerative
clustering. All texts are placed into a clade at the start and that clade is subdivided
into smaller clades. This method is less popular because it is more computationally
intensive than agglomerative clustering. But one advantage with divisive clustering
is that after only a few subdivisions, trends and large groups should be recognizable
(Kononenko and Kukar, 2007).

12

Figure 2.1: A labeled dendrogram with ten leaf nodes made using the R programming

language. Four clades are labeled (α, β, γ, ε). ∆ indicates the distance between texts F and

G.

Dendrograms Hierarchical clustering results are often visualized using dendro-
grams because they are easy to read. Dendrograms provide a visual way to determine
which texts are more alike.

More speci�cally, a dendrogram is a tree in which the leaf nodes represent indi-
vidual texts and non-leaf nodes represent clusters, referred to as clades. The vertical
distance between clades, in a vertically-oriented dendrogram, represents the relative
mathematical distance between clusters.

The labeled dendrogram in Figure 2.1 shows the results of clustering ten texts.
Labels A through J at each leaf represent a single text. The clade labeled β represents
the linkage of texts D and E. γ shows a clade that links text C to the clade containing
texts (B, H, F and G). ε is a clade that links two clades β and γ together. To
analyze the results of the cluster analysis, it is important to look at the heights of the
horizontal lines connecting texts and clades. The lower the horizontal line appears
to the bottom of the dendrogram, the more similar a text or clade is to the text or
clade to which the line links. For example, the link between texts D and E (β) is
the lowest, thus those two texts are most similar. Text J is least similar from all
other texts since its link to the rest of the dendrogram is the highest. ∆ indicates the
distance between texts F and G.

2.1.2.2 Classi�cation

Supervised learning di�ers from clustering in that datasets are partitioned into groups
prior to analysis. Texts are further separated into a training set and a test set. Each
text in the training set is further categorized or labeled into subsets of known classes.
The training set is used to `train' the classi�er, that is, teach the classi�er how to
identify instances of each class. Training sets are thus sets of texts whose class is
already known, for instance sets of Shakespeare's or Dickens' works. The test set is
the set of texts whose class is not known prior to analysis (or is known but ignored

13

during testing in order to verify the accuracy of the current model).

Bayesian Classi�er One type of classi�er is Bayesian classi�cation. These classi-
�ers use probabilities to classify a vector v = w1w2 . . . wk of attributes (a list of k word
counts) into a class C (Friedman and Kohavi, 2002; Weiss et al., 2005). The objec-
tive is to estimate P (C|v), that is, the probability of a text described by word count
vector v falling into class C. Using Bayes' rule, this decomposes to αP (C)P (v|C),
where α is a normalization constant not typically calculated, as it remains the same
throughout the problem. The issue encountered is that no two texts have identical
word distributions. Even when ignoring word counts and using a binary indicator
to mark the presence of a word in a text, there are 2k possible vectors; this number
increases exorbitantly when using word counts.

To correct for this, the Naïve Bayes classi�er is used. The classi�er is said to be
`naïve' because it assumes that the appearance of each attribute, word, in v is in-
dependent. By assuming this, P (v|C) decomposes into P (w1|C)P (w2|C) . . . P (wk|C)
and the classi�cation rule becomes

P (C|v) = αP (C)P (w1|C)P (w2|C) . . . P (wk|C).

The probability statistic is a product of probabilities that anything is of class C and
the probability of a word occur given that we are looking at class C. And now, because
any given wi may not appear in a class, a very small number can be used in place.
Friedman and Kohavi (2002) suggests 0.5/n, where n is the number of instances of
that word in the training set, otherwise known as Laplace smoothing.

The class decided by Bayesian classi�ers is the class that yields the highest prob-
ability.

Maximum Entropy Maximum Entropy (MaxEnt) classi�ers use statistical meth-
ods of multinomial logistic regression to correct for the unrealistic assumption of in-
dependence between attributes used by Bayesian classi�ers (Weiss et al., 2005). Word
counts are used as predictors in a regression model to determine the probability of a
text belonging to a class.

Decision Trees Decision trees use a classi�cation algorithm that determine class
based on simple sets of rules based upon training data used to traverse a tree. Like all
trees, decision trees are made of nodes and leaves. Leaves represent the classes found
in the training data. All other nodes consist of rules that determine the branching
of the path the text being classi�ed takes to a leaf node (�ytkow, 2002). Starting at
the root node, a text being classi�ed takes some path out of the node based upon
the answer to a rule such as �has more than 5 occurrences of the word child� or �does

14

not contain sneak and has more than 1,000 unique words.� The process continues
until a leaf node is reached, at which point the text is classi�ed. Many algorithms
are based upon this idea such as the C4.5 Decision Tree algorithm and Classi�cation
and Regression Trees (CART). It is the processes employed by these algorithms to
determine what rules are best and how many rules are enough to avoid problems of
over �tting or useless branches (Kohavi and Quinlan, 2002).

2.2 Common Text Mining Tools

Many tools and packages have been developed for the purposes of data and text
mining.

Detailed examples of many of the tools described in the following section, all using
the same sample data set are, provided in Appendix A. In this section, the focus on
each tool is directed at usability by novices, in particular for their ability to perform
text mining using cluster analysis.

2.2.1 Meandre 1.4.8

Developed by the Software Environment for the Advancement of Scholarly Research
(SEASR), Meandre is a data-intensive �ow engine developed in Java to enable data
processing via a platform-independent web user-interface. Meandre strives to be a
fast and �exible environment for both users and developers (SEASR, 2010; Ács et al.,
2010).

Meandre is simple to set up as all it requires is a computer running Java and
a modern web browser. Upon connection, the user is presented with the Meandre
�Workbench,� Figure 2.2, a clean interface that allows for the creation of a work-�ow,
or �ow, as shown in Figure 2.3. Complex tasks are broken down into smaller tasks
through the use of independent components that automate processing of data upon
input.

Meandre comes packaged with many working sample �ows ranging in complexity
from simple tag-cloud builders and comma-separated value (CSV) viewers to the
more complex C4.5 decision tree builders and clusterers. One intent is to allow users
to change these and build their own �ows. When building, adding onto or changing
existing �ows, the user selects pre-built components and adds them by dragging them
from the list onto a working pallet. The user can then connect these components by
dragging outputs from one component to the same typed input of another component.
Many components have functional parameters, like file_url and delimiter that
allow for more powerful control and �exibility of input data from the user's machine
or the web in a variety of standardized and supported formats.

15

Figure 2.2: Initial Meandre Workbench. The repository of built-in �ows, work�ow pallet,

and console are highlighted.

Developers can write and compile their own components in nearly any language.
Components are designed to be �reusable, combinable and have predictable uniform
behavioral attributes when they are executed� (Ács et al., 2010). In other words,
components are designed to automate one singular task on input data. By adhering to
Meandre's functional framework, new components can make use of existing classes and
structures and a new component can interact with existing components. This can be
seen in the extensive list of components provided in the default working environment.

At the time of this writing, the current version of Meandre (v1.4.8) is a tool that,
while powerful, needs more re�nement. There are some issues with the required level
of sophistication for both developers and users. Linguists and/or digital humanists
with little to no experience in programming may �nd that making �ows can be dif-
�cult as it is not readily obvious what components can and cannot connect. While
parameters do allow some customization of input data, the ability to simply start with
raw text �les and run an analysis does not exist in a simple way. Another concern
with Meandre, is the issue of usable output. For example, the dendrograms created
by Meandre's clustering tools do not display information in an easily consumable
format (see Figure A.3).

16

Figure 2.3: Simple Meandre �ow that opens, parses and displays a CSV �le in HTML.

2.2.2 WordSmith 5.0

WordSmith 5.0 is a Windows application created by Mike Scott at the University of
Aston in the UK. This application is designed to facilitate the detection of patterns
in large amounts of text (Scott, 2010). To do this, the program employs a number of
subprograms: WordList, KeyWords and Concord.

WordList is a relatively simple program that counts words in texts. This is not the
limit of WordList's power as it can determine frequencies of words both in individual
texts and in the set combined. Other, purely word-based descriptive statistics are
computed, including the mean and standard deviation of word length. WordList
also takes sentences into consideration and �nds the means and standard deviations
of both sentences and paragraphs. For the user, WordList can generate output as
simple Excel spreadsheets or a custom word list �le that can be used in subsequent
programs.

KeyWords is more complex program that calculates keywords in a text by com-
paring a text to a larger set of texts known as a Reference Corpus (RC). To select
a keyword, the program de�nes the keyness of the word by identifying the relative
frequency of a word in the text, comparing that to the frequency of the word in the
RC, and performing a statistical calculation (Scott, 2010). If the word occurs above
some user (or machine) de�ned minimum, the word is added to the list of keywords.
If the word occurs more than expected in the text compared to the RC, its keyness
is positive. Keyness is ordered and a list of keywords is produced.

The subprogram Concord produces concordances of texts, that is, it searches for
patterns in texts given a phrase to search for. This phrase can be as simple as a
single word or set of words or a more complex set of words including partial words,
i.e. the phrase the* will match the and there among many other words while the
will only match the (see Figures 2.4 and 2.5). This input phrase is similar to, but not
nearly as powerful as regular expressions. The Concord subprogram then provides a
list of every such occurrence and a few words on either side as context. Lists of most

17

Figure 2.4: Sample concordance output for the pattern the*.

Figure 2.5: Sample concordance output for the pattern the.

common phrases and word distances to the phrase aid in the search for patterns.
WordSmith is a robust program currently in its �fth incarnation, and very easy to

install and use. Two drawbacks are that WordSmith is a Windows-only application
(the recommended Mac solution is to buy a copy of Windows and dual-boot on an
Intel Macintosh) and has an $80 (US) price point.

2.2.3 MALLET

MALLET, the MAchine Learning for LanguagE Toolkit, developed by Andrew Mc-
Callum and graduate students at UMASS Amherst, is a Java-based, platform-independent

18

toolkit for natural language processing through statistics. A few capabilities include
text clustering, document classi�cation, and topic modeling (McCallum, 2002).

MALLET operates only on a command-line interface invoking the mallet tool.
This tool can perform a few main functions from the command-line, namely importing
�les and training classi�ers.

To import �les, the user isolates like texts, e.g. texts by the same author, into
unique directories. The directory path is then part of the associated label to each
text in the directory upon import. A special �le is output containing each text,
its word counts, and associated metadata. This output can be used by many of
MALLET's other functions and tools.

Another of MALLET's functions is to perform classi�cation of texts. To do this,
the user must use an output �le to train a classi�er using one of a few trainers made
available by MALLET including Naïve Bayes, Maximum Entropy and Decision Trees.
The training methods provide straightforward ways to randomly separate training and
test sets and to run repeated trials for cross validation. The text2classify tool
can then use the trainer to classify a directory of text(s).

MALLET includes other tools including sequence taggers and topic modeling. One
of the most powerful features for the Java programmer is the Application Programmer
Interface (API). It provides a rich set of classes for creating new trainers and other
tools.

The major drawback of MALLET for linguists and digital humanists is the command-
line-only interface. This is not immediately intuitive and requires prior command-line
experiences and may remain to be a signi�cant hurdle when teaching MALLET to
non-programmers.

2.2.3.1 Classifying Cynewulf Texts using MALLET

An example of classifying Cynewulf texts is provided here. Texts were split into three
categories, De�nitely Cynewulf (Cy), Not Cynewulf (NotCy) and Possibly Cynewulf
(MaybeCy) on recommendation of Anglo-Saxon scholar Professor Michael Drout, (En-
glish, Wheaton College). The De�nitely Cynewulf (Cy) set of texts contain the runic
signature of Cynewulf. The preliminary organization of texts in directories is shown
in Table 2.3.

A separate directory containing raw texts of the MaybeCy is read in and tested
against each of the models. Table 2.4 reports the probability that Cynewulf was the
author of each Maybe-group texts for each of the classi�ers.

The Naïve Bayes classi�er indicates that no text in MaybeCy is categorized by
Cynewulf. The C4.5 Decision Tree indicates that both Andreas and Christ A are cat-
egorized as Cynewulf works and is undecided (0.5) on Guthlac B. Maximum Entropy
only categorizes Christ A as a Cynewulf text. Christ A is classi�ed by two of the

19

Set Category Text

Training Set
De�nitely Cynewulf (Cy)

The Fates of the Apostles
Juliana
Elene
Christ B

Not Cynewulf (NotCy) All other Anglo-Saxon poetry

Test Set Possibly Cynewulf (MaybeCy)

Andreas
Christ A
Christ C
Guthlac B

Table 2.3: Division of texts in experiment to determine likelihood of Cynewulf authoring

four texts in the Test Set.

Naïve Bayes C4.5 Decision Tree Maximum Entropy
Andreas 0.0 1.0 1.98×10−31

Christ A 0.0 1.0 0.997454
Christ C 0.0 0.0 2.17×10−32

Guthlac B 0.0 0.5 8.47×10−6

Table 2.4: Results indicating the probability of each text in MaybeCy Test Set being au-

thored by Cynewulf using MALLET's Naïve Bayes, C4.5 Decision Tree, and Maximum

Entropy classi�ers. Very small values in the Maximum Entropy column are so small they

should be considered as zero in likelihood.

Listing 2.1: Shell script used to call the MALLET tools to train classi�ers and classify

Cynewulf texts.

1 # read contents of subdirectories separated into groups
2 bin/mallet import-dir --input cytest/* --output cynewulf.mallet
3

4 # train Naive Bayes, C4.5 Decision Tree, and Maximum Entropy trainers
5 bin/mallet train-classifier --input cynewulf.mallet --output-classifier

cy_nb.classifier
6 bin/mallet train-classifier --input cynewulf.mallet --output-classifier

cy_c45.classifier --trainer C45
7 bin/mallet train-classifier --input cynewulf.mallet --output-classifier

cy_me.classifier --trainer MaxEnt
8

9 # classify new data using the three trained classifiers
10 bin/text2classify --input tests --output - --classifier cy_nb.classifier
11 bin/text2classify --input tests --output - --classifier cy_c45.classifier
12 bin/text2classify --input tests --output - --classifier cy_me.classifier

three classi�ers as belonging to the Cy group which lends credence to the thought

20

that the �rst part of Christ (Christ A), as well as the known second part (Christ B),
were written by Cynewulf, but probably not the last part (Christ C).

The set of command-line invocations used to perform this experiment is shown as
a shell script in Listing 2.1. Each command was run individually so that the output
could be parsed by hand for relevant output. Using mallet's import-dir function,
the Cy and NotCy groups' texts (located in the cytest/cy and cytest/notcy
directories, respectively) are read in and grouped according to subdirectory and out-
put into the cynewulf.mallet �le. Using this �le, three classi�ers are made
using the entirety of the texts as training data for each of the Naïve Bayes (de-
fault), C4.5 Decision Tree and Maximum Entropy training methods through MAL-
LET's train-classifier function. Classi�cation is done on a set of raw texts
stored in the tests directory using each of the three di�erent classi�ers using the
text2classify program.

2.2.4 NLTK

The Natural Language ToolKit, NLTK, is an open-source, platform-independent mod-
ule for the Python programming language (Bird et al., 2009). NLTK makes full use
of Python's abilities including lambda functions (nameless functions that operate
just as any other function), list comprehensions (de�ning lists using a mathemati-
cal set-building notation), and a comprehensive set of its own classes and functions
to read, count, tag, and more, working on both raw and highly structured texts.
In addition to a rich tool set, many full corpora are available to download through
the nltk.corpus module, and the NLTK contains many languages, lists of special
words and whole sets of tagged and untagged texts.

The functionality of NLTK is immense and well documented. Simple tasks often
involve but a single function, for example splitting an entire corpus into list of sen-
tences or lists of words. Python's lists make it simple to count words enabling NLTK
to create frequency distributions. A few functions exist in the frequency distribution
(FreqDist) class to easily retrieve counts of total and unique words, a range of
words sorted by count and much more. An example is shown in Section 2.2.4.1. Once
imported, a set of texts can quickly be turned into training sets for part-of-speech
taggers or applied in a cluster analysis as shown in Section 2.2.4.2.

Since NLTK is released as a collection of Python scripts, developers can write
new modules and edit existing modules. The code documentation is well written and
available to the user through Python's extensive help library. Because NLTK is just a
module in Python, input and output can be used in conjunction with other modules
like Numpy and SciPy, numerical and scienti�c modules, respectively.

The biggest drawback of NLTK is Python itself. It is not that Python is a particu-
larly di�cult language to learn, in fact it is currently considered to be one of the most

21

suitable for teaching programming to novices (Leping et al., 2009). However, as with
any programming language, there is a steep learning curve for non-programmers. To
accomplish even simple tasks with NLTK, one must be prepared to grasp non-trivial
concepts of programming and data structures.

2.2.4.1 Counting Words in Inaugural Speeches

Listing 2.2 shows a simple use of NLTK's FreqDist, frequency distribution, class
to count the words used in all 56 US Presidential Inaugural speeches.

Listing 2.2: Only �ve lines of code can produce a sorted list of of the top 20 words used in

Presidential Inaugural Speeches.

1 import nltk
2 from nltk.corpus import inaugural
3

4 words = inaugural.words()
5 fd = nltk.FreqDist([w.lower() for w in words if w.isalpha()])
6 print fd.items()[:20]

Both nltk and the nltk.corpus.inauguralmodules must be imported. The
words function retrieves every word in the corpus as a list. A frequency distribution
is instantiated with a list of all words using a list comprehension. A word is included
if it is alphanumeric (a word or number) and then lowercased. In the instantiation,
only words are counted. The items function of a FreqDist returns a list of words
and their counts, ordered by counts. The top 20 are shown in Table 2.5.

Word Count Word Count Word Count
the 9906 that 1726 which 1002
of 6986 we 1625 have 997
and 5139 be 1460 with 937
to 4432 is 1416 as 931
in 2749 it 1367 not 924
a 2193 for 1154 will 851
our 2058 by 1066

Table 2.5: Top 20 words used by US Presidents in Inaugural speeches.

2.2.4.2 Clustering Words in Inaugural Speeches

Listing 2.3 takes advantage of standard Python functionality, NLTK and the SciPy
science package to cluster all 56 Presidential Inaugural speeches, from Washington's

22

�rst inaugural speech in 1789 to Obama's 2009 inaugural speech, and produce the
dendrogram in Figure 2.6.

Listing 2.3: Python script using NLTK, NumPy, and SciPy to hierarchically cluster and

render a dendrogram of Presidential inaugural speeches. Resulting dendrogram is shown in

Figure 2.6.

1 import nltk
2 from nltk.corpus import inaugural
3 from numpy import array
4 from scipy.cluster import hierarchy as hi
5 import pylab
6

7 # create list of counts of words for each speech
8 fd = [nltk.FreqDist([w.lower() for w in inaugural.words(f) if w.isalpha()])for f

in inaugural.fileids()]
9 # make a list of every word in the speeches

10 words = [w for i in range(0,len(fd)) for w in fd[i].keys()]
11 # remove duplicates
12 uniques = set(words)
13 # make one array for each speech containing identically ordered word counts
14 table = [array([fd[t][u] for u in uniques]) for t in range(0,len(fd))]
15 # sum each array of counts, determines number of total words in speech
16 sums = [sum(table[i]) for i in range(0,len(fd))]
17 # convert table to proprtions instead of raw frequencies
18 proptable = [array([float(c)/sums[i] for c in table[i]]) for i in

range(0,len(table))]
19

20 # cluster and build dendrogram
21 Z = hi.linkage(proptable, method=’centroid’)
22 hi.dendrogram(Z, labels=inaugural.fileids())
23 pylab.show()

Using the same inaugural data set, a list for frequency distributions, one for
each speech, is created using the same list comprehension in line 8 that are used in line
5 of the previous example. A list is then created for each word appearing in the corpus,
duplicates are kept (line 10). The next line (12) uses Python's set method to turn
a list into a list without duplicates. A list of arrays is created (one list of words
for each text) where each array contains the counts, in order of word appearing
in the unique set of words, for each speech (line 14). The counts are then turned
into proportions to normalize for speech length. Using SciPy methods, a hierarchical
agglomerative cluster analysis is performed resulting in the dendrogram in Figure 2.6.
More detail about clustering methods using SciPy is shown in Appendix A.2.

2.2.5 GATE

GATE, the General Architecture for Text Engineering, developed at the University of
She�eld (UK) is a Java-based, open-source, platform-independent front-end �capable

23

Figure 2.6: Dendrogram of a hierarchical cluster of all 56 Presidential inaugural speeches

(years 1789 to 2009). The inset shows how closely both of Reagan's speeches clustered to

Obama's speech as well as two other similar speeches, Bush's only inaugural in 1989 and

Johnson's only.

of solving almost any text processing problem� (Cunningham et al., 2010). GATE
provides a User Interface (UI) for users (initial startup screen seen in Figure 2.7) and
an API for developers.

CREOLE (a Collection of REusable Objects for Language Engineering) is the
backbone and design philosophy of GATE. Each object and class is designed to be
an independent entity with well-de�ned interfaces to interact with other objects.

24

Figure 2.7: GATE user interface.

Three types of GATE components exist, LanguageResouces (LRs), ProcessingRe-
sources (PRs), and VisualResources (VRs). LRs exist as input texts and corpora.
PRs exist to process texts, e.g. parsing. VRs exist to interact with the user in a GUI.

ANNIE (A Nearly-New Information Extraction) System serves primarily as a
pipeline of PR tools. Some functions are designed to tokenize, split, and tag, input
texts. These texts can take on many forms including, but not limited to HTML,
XML, SGML and raw text (Cunningham et al., 2010).

GATE is itself mostly an infrastructure designed to facilitate new functionality.
But, because of the modular nature of the GATE design philosophy, much of the
functionality comes through user-developed plugins as well as core plugins designed
and shipped with GATE. Plugins are written in Java and use the functionality pro-
vided by the GATE infrastructure. Many plugins exist to read di�erent languages,
tag, parse, and, even search and translate web pages through Google and Yahoo.

For users, GATE provides a simple UI with easy access to imported texts and
corpora and processing tools. With a text selected, the user is presented with a text
editor as well as various markup tools that can highlight HTML or XML tagged
regions or sentences and paragraphs in raw text. A selected corpora presents the
user with an editor to add and remove texts. Applications are pipelines of various
processing resources.

25

Despite an active developer-base, it may be di�cult to �nd plugins that accomplish
speci�c tasks. A search of the GATE website (November 2010) yields no information
on cluster analysis and little on classi�cation. This means, if a user wants to cluster,
they would need to write their own clustering plugin.

2.2.6 R

R is an open-source programming language geared towards statistical computing and
graphics across a wide variety of operating systems (R Development Core Team,
2010). The R community provides support and builds a wide array of packages to
complement the many existing features of R.

R operates like any scripting language through an interpreter on the command
line or through pre-built scripts. A variety of mathematically useful data structures
are provided from scalars to vectors and matrices. Many functions and operators are
designed to interact with each data type.

One of the most powerful features of R is its ability to produce publication-quality
graphical reports. The Comprehensive R Archive Network, or CRAN, maintains
current and archive versions of R as well as a repository of user-built packages.

Like other scripting languages, the biggest drawback to R is that it is a program-
ming language. R is the language of choice for statisticians who want to perform
statistical analyses and get quality graphical output. We view R as having a very
di�cult learning curve for linguists and digital humanists with no programming ex-
perience.

2.2.6.1 Cynewulf Clustering in R

This example intends to show R's powerful clustering features using the Cynewulf
data from the MALLET example in Section 2.2.3.1.

First, text �les from the previous Cynewulf experiment are read in, words counted,
relative frequencies calculated, and stored in a comma separated value (CSV) �le. The
last twelve lines of the CSV �le are shown in Table 2.6. Each text is stored in one row,
with the �rst column indicating the text. Subsequent columns indicate the relative
frequency of a word in the text. From this, riddles were removed from the list of texts
leaving a total or 109 texts in the cluster.

The code to cluster in R from this table is straightforward and shown in List-
ing 2.4. In line 1, the cynewulf.csv �le is read in. The row.names=1 parameter
indicates that the �rst column is where the names of the texts are stored. The
following two lines (3 and 4) calculates the distance matrix and clusters. The last
three lines (6-8) print the output of the plot function (the dendrogram) to the �le

26

not/A03_020_Deor_T00300.txt 0 0 0 0 0 0 0 0 . . .
not/A03_018_Part_T00280.txt 0 0 0 0 0 0 0 0 . . .
not/A08_WaldA_T01420.txt 0 0 0 0 0 0 0 0.01 . . .
not/A07_Finn_T01410.txt 0 0 0 0 0 0 0 0 . . .
maybe/A02_001_And_T00050.txt 0 0 0 0 0 0 0 0 . . .
maybe/GuthB.txt 0 0 0 0 0 0 0 0 . . .
maybe/ChristC.txt 0 0 0 0 0 0 0 0 . . .
maybe/ChristA.txt 0 0 0 0 0 0 0 0 . . .
cy/A02_002_Fates_T00060.txt 0 0 0 0 0 0 0 0 . . .
cy/A03_005_Jul_T00150.txt 0 0 0 0 0 0 0 0 . . .
cy/A02_006_El_T00100.txt 0 0 0 0 0 0 0 0 . . .
cy/ChristB.txt 0 0 0 0 0 0 0 0 . . .

Table 2.6: Vectors of relative word frequencies for the last 12 (of 109) texts in the CSV �le

used to generate the cluster analysis. Each text was prepended with a word to identify the

group of the text to the dendrogram reader. Numerical columns represent unique words and

their relative frequencies.

Listing 2.4: R script to perform hierarchical cluster on the Cynewulf CSV dataset.

1 vectors <- read.csv("cynewulf.csv", header=T, comment.char="", row.names=1)
2

3 vdist <- dist(vectors)
4 result <- hclust(vdist)
5

6 png(’cynewulf_cluster_r.png’)
7 plot(result, hang=-1)
8 dev.off()

cynewulf_cluster_r.png. In the plot function, the parameter hang=-1, in-
dicates that the leaves of the dendrogram should hang down to a �xed line.

The resulting dendrogram has 109 leaves and is thus very crowded with texts,
most of which are of minimal concern to the experiment. However, all of the texts
in the MaybeCy and Cy groups are clustered very closely. This makes it possible to
snip out just the relevant portion of the dendrogram, as shown in Figure 2.8.

2.2.6.2 RPy: R in Python

One e�ort to minimize the necessity of the complexities of R without reducing the
abilities of R is to use Python, a novice-friendly language. The RPy package for
Python does just this. Much of the necessary data input and manipulation can occur
within Python while statistical reports and graphs can be generated in R using the
RPy interface.

27

Figure 2.8: 26 of the 109 texts in the cluster analysis consisting of almost all of the �rst

texts to be grouped. The �rst two texts grouped were Elene and Andreas, a Cynewulf text

and Maybe Cynewulf text, respectively.

RPy instantiates an R environment inside of the running Python environment.
Variables can be passed from Python to R using the r.assign() method. R to
Python data transfer occurs when an R method returns data from a method which is
then returned through the Python method call into the Python environment. Such
data can be any standard R datatype crafted in certain ways in Python so RPy can
interpret the structure into something R can handle. R functions and data can be
accessed directly from Python using the r class.

Cynewulf Clustering in R through Python using RPy Using RPy, it is pos-
sible to reproduce the results from the R cluster of Cyenwulf texts in Section 2.2.6.1.
In this case, Python is used to read in the data and passes the data o� to the R
environment to let R do the clustering.

Listing 2.5 produces the same dendrogram as Listing 2.4 with, however, a little
more work. Lines 1 through 3 import the needed modules, rpy for R interaction,
csv to read in the data �le, and numpy.array to coerce Python's data types into
data R can handle. Line 5 opens and reads the �le cynewulf.csv into a list of
rows, where each row is a list of values as delimited by commas. The for loop on

28

Listing 2.5: Python script to perform hierarchical cluster on the Cynewulf CSV dataset.

This script is equivalent to the R script in Listing 2.4. To make variables clear, a p is

prepended to Python variables and r is prepended to R variables.

1 from rpy import r
2 import csv
3 from numpy import array
4

5 preader = csv.reader(open(’cynewulf.csv’, ’r’), delimiter=’,’)
6

7 ptexts = []
8 pvectors = []
9

10 for row in preader:
11 ptexts.append(row[0])
12 pvectors.append([float(n) for n in row[1:]])
13

14 r.assign(’rtexts’, ptexts)
15 r.assign(’rvectors’, array(pvectors))
16

17 r(’rvdist <- dist(rvectors)’)
18 r(’rresult <- hclust(rvdist)’)
19

20 r.png(’cynewulf_cluster_py.png’)
21 r(’plot(rresult, labels=rtexts, hang=-1)’)
22 r(’dev.off()’)

Line 10 iterates through rows read in from the �le. The list ptexts, instantiated on
Line 7, gets the text's name of the row, stored in the initial cell. pvectors appends
the list of all values in the row that are not the �rst value. Because csv reads the
�le in a string, the values must be coerced into floats.

The r.assign function places the Python variable, argument 2, into a variable
in R speci�ed as argument 1. When adding pvectors to R, it must be wrapped in
a numpy.array, as that is how R accepts matrices.

Lines 17 and 18 use R commands placed inside single quotes to calculate the
distance matrix and cluster based on the matrix. Lines 20 through 22, create the
PNG output �le, cynewulf_cluster_py.png, and plots the dendrogram into
that �le. One change from the R script is that the labels must be speci�ed since they
were not included in the rvectors matrix.

The resulting dendrogram is also large and cluttered, but otherwise, the same as
before.

29

Chapter 3

Methods and System Engineering

This chapter explains how diviText works at both high and low level system views.
Section 3.1 provides a look at the system's functionality by presenting how the user
interacts with the application. Section 3.2 gives an overview of some functions and
scripts and the results of their invocation. Section 3.3 details how parts of the
JavaScript and PHP systems work in an e�ort to make later sections more under-
standable. Section 3.4 discusses how and when functions and scripts are invoked.

3.1 Detailed Functional Speci�cation

diviText is a web-based application designed to facilitate the process of text segmen-
tation for quantitative analysis in text mining. To do this, diviText presents a clean
user interface (UI) that allows the user to upload texts to a server, graphically or
automatically segment their texts while simultaneously viewing a current snapshot of
their choices, and download word frequencies for their segmented texts.

diviText is rendered in a modern web browser as an HTML page built with the
ExtJS 3.3.1 JavaScript framework. This framework facilitates data-driven page ren-
dering and communication with the server. Communication between the browser and
server uses Ext's Asynchronous JavaScript and XML (AJAX) module. This creates
a request for a page which is returned from the server and parsed by the JavaScript.
A custom �CutterPanel� module is implemented to perform text segmentation, both
visually and automatically.

3.1.1 Goals

Scholars who �mine� texts often need to segment these texts in order to provide a
�ne-grained analysis that cannot be achieved by simply working with whole texts
within corpora. diviText is designed to provide an easy way to graphically view

30

text segmentation and return data that can be used in subsequent quantitative text
analysis.

3.1.2 User Interface

Upon loading diviText into a web browser for the �rst time in a session, the user
is presented with a fresh interface with some text instructions on how to use the
application. This text is placed in the main, Visual Cutter Panel, so users can practice
using the tool prior to uploading their own texts. Figure 3.1 shows the main diviText
interface.

Many sections in the UI can be resized by the user.

Figure 3.1: Initial interface presented to user upon the start of a session. Annotations were

added to indicate some common vocabulary and label some areas of the screen.

3.1.2.1 Text Manager and File Uploader

The Text Manager is the �rst thing that the user must access (upper left in Figure 3.1).
This tree object manages uploaded texts and chunksets built with the Cutting tools.
The �Upload New Text� button (lower left) displays a dialog box in the browser with
a form that allows the user to choose a text �le from their hard drive, name it, and
upload it to the server (see Figure 3.2).

The �rst �eld in the form is the �File� �eld. Clicking the �Browse...� button
displays a window produced by the user's operating system. Using this, the user can
choose a �le from their computer.

31

Figure 3.2: Dialog box opened when �Upload New Text� button is clicked.

After selecting the desired �le, the �Text Name� �eld is automatically populated
with the �le name parsed from the �le path in the previous �eld. This can be edited
by the user to whatever they wish to name the text.

Clicking the �Upload� button, tells the browser to send the �le and associated
name to the server. If the �le is uploaded successfully, the dialog box is removed and
the Text Manager is reloaded, adding the new text to the tree of uploaded texts (see
Figure 3.3).

Figure 3.3: Text Manager after �ve texts have been uploaded and four di�erent chunksets

have been created, one for �Beowulf� and three for �A Tale of Two Cities.�

The Text Manager's tree represents the hierarchy of the user's �les that have been
uploaded. Hanging o� of the �Uploaded Library� root node are all of the user's texts
uploaded to the server. If the user has created chunksets for a text, a leaf node hangs
o� of the text node (see Figure 3.3).

Using the contextual menu, right-clicking or double-clicking a node in the tree,

32

the user can operate on texts and chunksets. A right click on a node representing
a text displays a menu with two options, as shown in Figure 3.4. The user has the
option of showing the text (also accomplished by clicking the node), or removing the
text and all associated chunksets (see Section 3.1.2.2 for creating chunksets).

Figure 3.4: Context menu shown when right-clicking or double-clicking a text node in the

tree. In this example, the user has accidentally uploaded the same text twice and wishes to

remove one copy of the text.

Similarly, when the user right-clicks a chunkset, a menu is displayed with two
similar options: �Remove Chunkset� deletes the chunkset and �Show Chunkset� loads
the associated text into the Visual Cutter window and displays the text and associated
chunk breaks in this chunkset.

3.1.2.2 Visual Cutter Panel

The Visual Cutter panel, located in the center of the page is the focus of the appli-
cation (see Figure 3.1).

Upon selecting a text from the Text Manager, the body of the text is rendered
into the Visual Cutter region. If the user has previously segmented the text, it is
colored so the user can distinguish how the text was previously segmented.

To change how the text is segmented (that is, to add a new chunk break), the
user simply clicks the word that starts a new chunk. The words on both sides of the
new chunk-break are then recolored to make the change obvious. When hovering over
a word with the mouse, but prior to clicking a word, the word is highlighted and a
black bar placed on the top and left sides of the word indicating that this word will

33

be the start of a new chunk if selected. Hovering over a word also reveals the number
of the word in the text. Words are indexed starting at 1.

The images in Figure 3.5 show some of the progression (top left to bottom right)
of a user segmenting the initial sample text into segments on sentence boundaries.
This is accomplished by clicking the �rst work of each sentence, except for the �rst
sentence (because the very �rst word in the text implicitly starts a new segment).

Figure 3.5: The progression of clicks (from the top left to the bottom right) to segment

the sample text into segments of sentences. The bottom right image indicates the �nal

segmentation on sentence boundaries.

Located at the bottom of the middle Visual Cutter Panel (see Figure 3.1) are
�Save Chunkset� and �Reset� buttons and a text �eld where the user can specify the
name of a chunkset. This input bar is shown in Figure 3.6. The �Save Chunkset�
button sends a message to the server with instructions on how to segment the text
and to save this chunkset with the name in the �eld. The �Reset� button removes
all segments in the text. This bar is disabled when the sample text is active or when
switching to a di�erent text.

34

Figure 3.6: The bar at the bottom of the Visual Cutter Panel. Here, the �Chunkset Name�

�eld is populated indicating that the user has named the chunkset �Fitts� prior to saving.

3.1.2.3 Chunk Viewer

As the user sets chunk breaks in the Visual Cutter Panel, a table in the top right
of the page indicates how the text is currently segmented. The table displays the
chunks in order, from top to bottom of the text, indicating the word numbers that
de�ne the �rst and last words in the chunk as well as the number of words in each
chunk. Each row in the table is colored with the same color of the chunk of text in
the Visual Cutter Panel. A sample is shown in Figure 3.7 after a few chunks have
been created.

Clicking on a row in this table jumps the Visual Cutter panel to the �rst word in
that chunk (indicated by the �start� element of the row). The �rst and last words in
that chunk are then brie�y highlighted in red in the text.

Figure 3.7: The Chunk Viewer showing a table of results for a text that has been segmented

into nine pieces. The chunks correspond to the chunks from the �nal image in Figure 3.5.

3.1.2.4 Automatic Cutting Tools

In addition to manually setting chunk breaks as previously discussed, the interface
also provides options to automatically segment texts based on input parameters.
Automated cutting options are located in the lower right of the diviText interface (see
Figure 3.1). An accordion menu presents each option: �Simple Cutter,� �Advanced
Cutter,� and an info-box for the Visual Cutter.

35

The Simple and Advanced Cutting options have a �Cut� button that sends the
speci�ed parameters to the Visual Cutter panel to visualize the cut. This step does
not send any data to the server, but only shows the result of the cut. The user can
then modify these automated chunk breaks through visual means. It should be noted
that the Simple and Advanced Cutting options apply to the entire text and erase any
cuts previously made.

(a) Simple Cutter. (b) Advanced Cutter.

Figure 3.8: Automatic cutting tools in the lower right of the interface. Simple Cutter (a)

cuts the text into the speci�ed number of chunks. Advanced Cutter (b) cuts the text into

user-speci�ed sized chunks.

The Simple Cutter option, shown in Figure 3.8a, allows the user to specify the
number of chunks in which to cut the text. Chunk breaks will be placed every
round(N

C
) words where N is the number of words in the text and C is the speci�ed

number of chunks, that is, the size of the chunks will be the best integer value to �t
the text to the desired number of chunks. This number is speci�ed in the �Chunks�
�eld as an integer greater than 0.

The Advanced Cutter option, shown in Figure 3.8b, uses a �Size� parameter to
cut the text into �xed sized chunks. This �eld accepts only positive integers. A slider
with the label �Last Proportion� a�ects only the �nal chunk. If the �nal chunk ends
up being less than the speci�ed proportion of all the other chunks, it will be merged
with the �nal chunk creating a chunk larger than the speci�ed chunk size. This slider

36

defaults to a value of .50 and is limited to .01 intervals between .01 and 1. When
sliding, the current value is shown in a tool tip. For example, if a text consists of
100 words, and the user entered a chunk size of 7, and a last proportion of .5, the
text would be split into 13 chunks of size 7, and a 14th chunk of size 9. If the last
proportion were to change to something less than .28, the text would be split into 14
chunks of size 7 and a 15th chunk of size 2.

3.1.3 Data: Spaces Between Words

The underlying data structure for storing chunk breakpoints is a simple array. When
a user clicks a word or its following space, an array is updated either adding/removing
a number to/from the array. This number is the index of the space between the clicked
word and the previous word, an index to a space character.

A_
0
B_

1
C_

2
D_

3
E_

4
F_

5
G_

6
H_

7
I_

8
J

Figure 3.9: A visual explanation of space breaks used to de�ne chunksets. Here words are

represented as capital letters A through J and spaces are underscores indexed 0 through 8.

Figure 3.9 aids in explaining how spaces are de�ned. Words are represented by
letters A through J and spaces are represented by underscores indexed by numbers
0 through 8. There are a total of 10 words and 9 spaces. A new segment is marked
by the space to the left of the word that de�nes a new chunk (that is, the space after
the last word in a chunk or the space before the �rst word in a chunk).

Chunk1︷ ︸︸ ︷
A_

0
B_

1
C_

2

Chunk 2︷ ︸︸ ︷
D_

3
E_

4
F_

5
G_

6
H_

7
I_

8
J

Spaces:
[
2
]

Figure 3.10: The resulting visual and space array data if the user clicked D or space 3.

For instance, if two chunks are de�ned as ABC and DEFGHIJ, then the array
of spaces would only contain a 2 (shown in Figure 3.10). A break cannot be placed

37

Chunk1︷ ︸︸ ︷
A_

0
B_

1
C_

2

Chunk 2︷ ︸︸ ︷
D_

3
E_

4

Chunk 3︷ ︸︸ ︷
F_

5
G_

6
H_

7
I_

8
J

Spaces:
[
2, 4
]

Figure 3.11: Assuming the two chunks shown in Figure 3.10, the resulting visual and space

array data if the user then clicked F or space 5.

on the �rst word (i.e. the space that would be represented by space −1) because the
start of the text is implicitly the start of the initial chunk.

If the user were then to de�ne three chunks as ABC, DE, and FGHIJ (by clicking
on word �F� or space 5), a 4 would be added to the array (shown in Figure 3.11).

This array of space data is used in the backend to produce chunksets. Figure 3.12
summarizes the major functional componented of the diviText tool.

3.2 Black Box: The Public API

This section outlines the Application Programmer's Interface (API) to a few PHP
scripts and the JavaScript CutterPanel module.

3.2.1 CutterPanel Module

Built in JavaScript using the ExtJS framework, a custom CutterPanel component
was developed as the focus of diviText. This is simply an extension of the existing
Ext.Panel module provided by ExtJS. This panel handles both the rendering of
texts to the page and the cutting of texts.

A few functions have been developed for the CutterPanel component to perform
text segmentation and change the current text. Here, the functions are explained only
at a high level. See Section 3.3 for the technical implementation details.

3.2.1.1 newText

The �rst of the CutterPanel functions is CutterPanel.newText(text, id).
A call to this function updates the Visual Cutter Panel with a string of text, speci�ed
with the text parameter. The text is parsed and replaces the text currently in the

38

Figure 3.12: An overview of the diviText system. Numbers roughly correspond to the order

in which actual processes take place.

Visual Cutter Panel. It also updates the id of the text currently contained in the
Visual Cutter Panel with the id parameter to the function.

3.2.1.2 reset

The CutterPanel.reset() method removes all current segmentation parameters
in the text displayed in the CutterPanel.

3.2.1.3 getSpaces

The CutterPanel.getSpaces()method returns a sorted array of all space breaks
in the current text that de�ne the space between each segment.

39

3.2.1.4 threeParamSpacer

CutterPanel.threeParamSpacer(size, shift, last) is one of the auto-
matic cutter functions. This uses the size parameter to de�ne �xed-size chunks
in the current text. This size is an integer greater than or equal to 1. The last
parameter speci�es the minimum proportion of the �nal chunk between values 0 and
1. The last chunk can be no smaller than size× last words. The shift parameter
is unused in this implementation.1

3.2.1.5 oneParamSpacer

CutterPanel.oneParamSpacer(chunks) is the second automatic tool that cre-
ates chunks number of chunks in the current text. This method sets up parameters
for CutterPanel.threeParamSpacer calculating size = round(N

chunks
). The

last parameter is defaulted to a value of 0.5.

3.2.2 PHP

Server-side PHP scripts are invoked by the diviText JavaScript through the Ext.Ajax
module. Data is sent from the browser to the server in the form of HTTP POST mes-
sages. The server responds with a page of text formatted as JSON (JavaScript Object
Notation) data so the browser can parse a JSON object from the text. Speci�c scripts
are invoked to perform speci�c functions. This section outlines the PHP scripts that
are invoked by Ajax calls and what the scripts expect as POST data.

3.2.2.1 gettexts.php

The gettexts.php script returns a list of texts and chunksets belonging to the user
as nodes in a tree. Texts have attributes like: text, the display name of the text;
tid, the internal id of the text; size the size of the text in bytes; and a children
node. The children node holds information regarding all chunksets belonging to
the text. Chunksets have attributes similar to texts.

The data returned is formatted properly to be immediately parsed and placed into
the Text Manager tree in the user interface.

3.2.2.2 gettext.php

The gettext.php script returns the text of a speci�ed �le and the name of the
text. A textid parameter is sent to the server as POST data corresponding to the

1The shift parameter cannot be used in this visual implementation. See Section 5.1 for mention
of this and other functionality that can be added in the future.

40

internal id of the text.

3.2.2.3 uploadtext.php

To upload a text to the server, uploadtext.php is called. This script expects
a name parameter to name the text and builds a unique text identi�er. A �le is
expected to be sent from the browser to the server using HTTP POST �le transfer.
This �le is then cached in the user's directory on the server for further access.

3.2.2.4 removetext.php

To remove a text from the server, removetext.php is called. The POST parameter
textid is expected. This identi�es the correct text to remove. Using this script
permanently removes the text from the server.

3.2.2.5 chunk.php

The chunk.php script is used to cut a text into segments. This script expects three
POST data items. The �rst is textid, the unique text identi�er, as in most other
scripts. The second item is name. This is the name of the new chunkset which will be
displayed in the Text Manager. This is parsed to form a unique chunkset identi�er.
The �nal POST item expected is spaces. This is a JSON encoded array of spaces.
This string is decoded by the PHP script on the server to get the chunk breaks.

3.3 White Box: Internal Components

This section is designed to provide an overview of how things in the diviText system
are put together. Section 3.3.1 describes parts of the ExtJS framework that allow for
easier discussion in later sections concerning the JavaScript components. Section 3.3.2
describes how PHP pages work in the diviText system and the main data structures
employed. A section on error handling in both JavaScript and PHP is found in
Section 3.3.3.

3.3.1 JavaScript and ExtJS 3.3.1

All of the client-side code is written in JavaScript and run through the web browser.
Speci�cally, much of the layout of the page viewed by the user is built using the
ExtJS 3.3.1 framework. This is a great advantage because ExtJS supports all modern
web browsers including Internet Explorer 6+, Mozilla Firefox 1.5+, Opera 9+, and
Chrome 3+. This compatibility means that the code must only be written once, and

41

ExtJS will take care of the many di�erences between browsers. Another advantage
is data-driven page rendering. Given only a few instructions about how the data is
formatted, the dataset itself and how to display the data, ExtJS can render high-
quality tables, trees, grids, etc.

ExtJS has a hierarchy of basic and complex �components.� A component is simply
a JavaScript Object that inherits features from a line of ancestor classes. For instance,
an Ext.Panel is an extension of the Ext.Container type which simply holds
items to be rendered to the page. The Ext.tree.TreePanel class is a descendent
of the Ext.Panel type. This tree can use XML or a JSON object retrieved from the
server or hard-coded into the page to render a hierarchical tree. Nodes in the tree can
be moved, added, deleted or changed. The TreePanel has a few associated, but not
inheriting classes like Ext.tree.AsyncTreeNode and Ext.tree.TreeSorter
to handle rendering and alteration of data in the tree. It should be noted that the
name of the class is not indicative of class hierarchy but a logical arrangement of
associated classes.

The main body of code is stored in divitext.js. This �le contains all of the
logic to build the page itself and communicate with the server. CutterPanel.js
contains the logic to render the Visual Cutter Panel and all cutting options.

When instantiating any component, it is common to see some code like:
1 var myPanel = new Ext.Panel({
2 title: "Cool Panel",
3 id: "mypanel-id",
4 ... some more configuration options ...
5 items: [... Ext components ...]
6 });

This code creates a new Ext.Panel, a simple container for more complex ob-
jects, and places it in the variable myPanel. The parameter to the constructor
of Ext.Panel, and all Ext objects created with new, is an object (set of key,
value pairs) that con�gures the new component. Most con�guration options over-
ride any option de�ned in the component de�nition. Common con�guration options
are title, id, and items.

The title option speci�es the title of the object. In most components, this is
displayed on the page.

The id option is a unique name that identi�es the object to Ext. Using the
Ext.get(id) or Ext.getCmp(id), where id is a string, Ext will return an Ext.Element
or a component, respectively. These are useful to retrieve the component's HTML,
or component itself once it has left scope.

The items option is an array of components. The array entities within items
are subsequently added, or drawn within the component.

Custom components are built on top of existing Ext components by using the
Ext.extend method. Typically this method takes two parameters: �rst, an existing

42

Ext component to augment; and second, an object that speci�es the parameters to
use when building the custom component, that is, what makes the custom component
unique. A simple example of this follows.

1 CustomPanel = Ext.extend(Ext.Panel, {
2 title: "My Sweet Custom Panel"
3 });

This example builds a custom component called CustomPanel which augments
the basic Ext.Panel. This custom component speci�es a default title �My Sweet
Custom Panel� which will be displayed when the object is rendered to the page. To
use CustomPanel in code, simply instantiate it:

1 var myPanel = CustomPanel({
2 id: ’mypanel2-id’,
3 items: [...]
4 });

If the title con�guration option was set in the instantiation, that would override
�My Sweet Custom Panel� de�ned in the de�nition of the CustomPanel.

This method of creating custom objects has the advantage of creating components
in separate �les, instantiating them when needed, and providing the ability to easily
reuse, recycle, and augment new components. One major disadvantage is that the
build process for these components is di�erent, and more complex than simple in-
stantiation.2 Constructors and initiation functions must be de�ned to render items
without error.

3.3.2 Hypertext Preprocessor (PHP)

The server-side software is written in PHP, speci�cally intended to be run using PHP
version 5.1.6 (an old but very stable version). One major disadvantage to this version
of PHP is the inability to use UTF-8 text.3 Many special, and language-speci�c
characters can break the system to the point that not all of the user's text may be
saved to the server (see Section 5.1).

This section addresses how the PHP scripts are designed to work and the data
structures that handle Users, Texts, and Chunksets.

3.3.2.1 Scripts

Each PHP page starts out similarly:

2This complexity is left to the reader to pursue but is used heavily in the code.
3This prevents many non-English texts from being uploaded. To deal with special characters

in SGML-formatted Anglo-Saxon texts, an ASCII encoding of characters is created. For instance,
þ(thorn) is represented by &t;. PHP version 6 is slated to support UTF-8 natively.

43

1 $HOME = "../..";
2

3 require_once("$HOME/includes/nav.php");
4 require($MODTEXTS);
5

6 session_start();
7 login();

The HOME variable de�nes a relative path from the script to the root of the diviText
web site. This helps build links between pages from a �xed point of reference. Here
this script is located in a directory two levels removed from the root.

The �le /includes/nav.php is required. Using HOME, the script can �nd this
required navigation script which is located in the includes directory which is a
directory immediately o� of the root. This script generates links to many scripts
using the HOME variable to build correct paths.

Line 4 requires the �le stored in MODTEXTS. This is a variable de�ned in the
navigation page that contains the path to the �le that holds the de�nition of the
Text class described in Section 3.3.2.3. The path to the �le is ../../modules/
texts/text.php.

The call to session_start starts logging the user's session. The subsequent
call to login logs the user in. This process is described in Section 3.3.2.2.

Then, the main part of the script occurs. These processes are described in Sec-
tion 3.4. Error handling is described in Section 3.3.3.1.

If the page is part of an Ajax request (for example, to load a text), the page ends
with:

1 echo json_encode($message);

This prints a message that is read by the Ajax handler as described in Sec-
tion 3.3.3.1.

3.3.2.2 Users

Data for a user is stored in the temporary PHP $_SESSION variable. This variable
lasts as long as the user remains active at the web page. If the user closes their
browser, they are no longer guaranteed to be able to recover their data from the
current session.

This design is on purpose. It allows the system to hide the user's unique identi�er.
Since the $_SESSION variable is not explicitly visible to the user, all the information
contained within is hidden from the user and any malicious users.4 A cookie in the
user's browser stores the unique token identifying a PHP session which is sent to the
server to identify the session and allow access to the user's data.

4This is not entirely true. If a malicious user gains access to the browser cookies of a user (using
a tool like FireSheep), the malicious user can act as an imposter.

44

At the start of each script, prior to HTTP headers being sent back to the browser,5

a PHP server-side call is made to session_start(). This indicates that either,
a PHP PHPSESSID cookie is present and this is a continuation of an active session,
or the cookie does not exist indicating that this is a new session. Following this is a
call to login() which ensures the array $_SESSION[‘user’] exists. If this array
does not exist, it must be built in a call to new_session().

1 function new_session()
2 {
3 $_SESSION[’user’] = Array();
4 $_SESSION[’user’][’id’] = uniqid(’divi_’);
5 $_SESSION[’user’][’dir’] = DIVI_DIR . "/" . $_SESSION[’user’][’id’];
6 $_SESSION[’user’][’texts’] = Array();
7 return mkdir($_SESSION[’user’][’dir’], 0700, true);
8 }

This $_SESSION variable is an associative array. The user's data is stored as
a value of the $_SESSION[‘user’] key, which is itself made to be an associative
array. This is populated with three data items.

The �rst is a unique id identifying the user stored in $_SESSION[‘user’][‘id’].
The id is generated by PHP's uniqid function with the parameter `divi_' to be
prepended to each id returned. The id is based upon the current time. The �nal id
may look like divi_4da361787f122. This serves to generate a working directory
for the user.

The directory is then stored in $_SESSION[‘user’][‘dir’]. The directory
for each user is stored in /tmp/divitext, a directory created to be readable by
only the web server software. The value of this key will contain /tmp/divitext/
divi_4da361787f122 for the id above. A portion of this directory is shown from
an active server in Figure 3.13.

The $_SESSION[‘user’][‘texts’] value is initialized to an empty array.
The array will hold Text objects and will be indexed by the Text's id.

This `user' key is assumed to be present in every script. Without it, there is no
user, and thus nowhere to store data. Login functions at the top of each PHP page
should guarantee this key to be present.

3.3.2.3 Texts

Texts uploaded to the server are handled by a Text class. This class stores informa-
tion about where the text is located, its name, size, directory, and id.

The text also contains an array of Chunkset objects. This array is similar to the
user's array of texts, but contains Chunkset objects indexed by the chunkset ids.

This class also provides a static method for generating these ids.

5HTTP headers de�ne the page that is being transfered from the server to the browser. The
meaning of this has no bearing on the reader's understanding of the rest of this text.

45

Figure 3.13: The contents of the /tmp/divitext directory from a live diviText server.

User divi_4da361787f122 has uploaded �ve texts. The Beowulf text directory has been

expanded to show part of the �tts chunkset.

1 static public function id_from_name($name)
2 {
3 $cname = "$name";
4 $cname = preg_replace("/\.[a-zA-Z]{2,4}$/", "", $cname);
5 $cname = preg_replace("/[^0-9A-Za-z_]/", "", $cname);
6 $id = "$cname";
7 return $id;
8 }

This method �rst parses out a possible �le extension (Line 4) and removes all
punctuation and whitespace except for underscores (_) using regular expression re-
places (Line 5).

Methods are also provided to quickly read the original �le into a string and to add
and remove chunksets.

3.3.2.4 Chunkset

The Chunkset class handles chunksets created by the user using the diviText tool.
This class is very similar to the Text class. Data members include the chunkset id,
name, and directory. The array of spaces that created the chunkset is also stored (see
Section 3.1.3). Methods include chunking methods, methods to write chunks to text
�les, and comma separated value (CSV) �les.

46

3.3.3 Error Handling

This section discusses error handling that might occur in JavaScript and PHP through
user's (mis)use of the diviText tool.

3.3.3.1 Errors In PHP

Error messages, for the most part, are handled manually. In many scripts, it is
common to see:

1 $errors = null;
2 ...
3 if (error conditions)
4 $errors[] = "Some error message.";
5 ...
6 if (!$errors)
7 progress in the script

This creates a local variable errors and initializes it to null. Later, if some
error condition has been met in Line 3, then Line 4 pushes the error message string
�Some error message.� into the array of errors. By not declaring errors as an array
type, if no error messages have been pushed into errors, the if conditional in Line
6, will evaluate to not null (i.e. true), and the script can progress.

Later, in the script that prints output to the page, errors are printed if any errors
occurred.

1 $message = null;
2 if ($errors)
3 {
4 $message[’success’] = false;
5 $message[’errors’] = $errors;
6 }
7 else
8 {
9 $message[’success’] = true;

10 $message[’username’] = $username;
11 }
12 echo json_encode($message);

This basic snippet of code prints a success status. If errors happened during
execution, the success key of the message is set to false and the errors key
is set to the array of errors. If no errors were caught in the errors array, then
success is set to true. This script returns the username of a user if the script was
successful. (See the next section for how this is handled by the browser.)

Error messages generated using this technique should be careful not to reveal
any sensitive server information because these errors are displayed to the user, as
described in the next section. Sensitive information may include: the user's unique
id, database login information, server information, and so on.

Errors are also logged to the server's error logging �le using the trigger_error
method. In most instances, this method is passed text describing the error.

47

The error message logged by trigger_error can be more detailed because the
error is not shown to the user, but logged to a secure log �le. Information logged
should be speci�c enough to aid in debugging. Details can include directories and
variable contents among other sensitive information.

3.3.3.2 Handling PHP Errors In JavaScript

This section describes how errors returned from PHP scripts on the server are handled
by the JavaScript at the browser. Many Ajax requests generated by the JavaScript
include success and failure callback methods. These methods are executed after
the Ajax request �nishes.

A simple Ajax request to get a username may look like:
1 Ext.Ajax.request({
2 url: ’getusername.php’,
3 success: function(r,o) {
4 var response = Ext.decode(r.responseText);
5 alert(response.username);
6 },
7 failure: function(r,o) {
8 var response = Ext.decode(r.responseText);
9 report_errors(response.errors, "Username Get Failure");

10 }
11 });

A request is made to the getusername.php script. The script will return a
JSON object encoded as a string. The string is then parsed for data which indicates
one of two things: success or failure.

If the script is successful, the JSON object response may look like:
1 {
2 success: true,
3 username: ’jimbob’
4 }

This triggers the success method because of the key success and its value of
true. The username is also stored in the object. Lines 3-6 in the Ajax request decode
the response, stored in r.responseText and alert the username.

If the script failed, the JSON object response may look like:
1 {
2 success: false,
3 errors: [
4 "Database connection could not be established.",
5 "Backup database offline."
6]
7 }

This JSON object is a failure object because the key success was set to false.
An array of errors is present. The failure callback of the Ajax request calls the
function report_errors with the array of errors and the title �Username Get
Failure�.

48

1 function report_errors(errors, title) {
2 var out = "";
3 for (var i = 0; i < errors.length; i++)
4 out += "\n" + (i+1) + ". " + errors[i];
5 Ext.Msg.alert(title, out);
6 }

This method generates an Ext.Msg.alert dialog box with the data from the
errors array in the body with the supplied title. This will alert the user that some
error happened and depending on the error, what they may be able to do to resolve
the issue. In this case, error messages report that no database could be contacted.6

The PHP script generates the JSON object that the request uses to call the
appropriate callback method and stores the data used by the handlers. This was
described in the previous section.

3.4 Code Walk-Through

This section walks through much of the code as it is executed. First, the process of
building the page is described.

3.4.1 Page Load

diviText is loaded upon request of the diviText homepage index.php. This loads
only the shell of the page. Parsing the HTML, the browser runs across link and
script tags that specify required page inclusions for CSS (Cascading Style Sheet)
and JavaScript, respectively. Once these �les have been successfully loaded, the
JavaScript can be executed.

The �rst executable line of code is
1 Ext.onload(function() { ... });

This function builds the main display area of the page, an Ext.Viewport with
the border layout engine. This layout engine speci�es north, south, east, west,
and center regions within the page and allows (in this con�guration) resizable east,
west and center elements. East, center, and west regions are populated with di�erent
Ext components. North and south regions are populated with static header and
footer HTML div elements, respectively.

3.4.1.1 West

The west region lies on the left side of the page. This houses the Text Manager and
buttons to upload and download texts.

6This database connection error sample is not part of any production code in diviText.

49

Text Manager The Text Manager User Interface (UI) element is a TextViewer
component with the id text-viewer. This component is an extension of the
Ext.tree.TreePanel component. Prior to rendering, data is loaded from the
response text of an Ajax request to modules/texts/gettexts.php page (texts
and chunksets that �ll the tree). In addition to loading the data, listeners are set
up to handle left and right-clicking nodes. These listeners use functions also (de-
�ned in TextViewer) to handle selecting, removing and displaying context menus
(explained in more depth in Section 3.4.8).

In order to be added to the list of components to be rendered to the page, the
following code is added to the de�nition of the west component.

1 items: [{
2 layout: ’fit’,
3 border: false,
4 items: [new TextViewer({id:’text-viewer’})]
5 }]

In this case, items is an array of Ext.Panel objects (these are not de�ned
explicitly as panels, but Ext will assume any object de�ned without explicit refer-
ence to object type as a Ext.Panel). The subpanel is rendered to �ll as much
space as possible using the `�t' layout without a border. The subpanel itself holds
the TextViewer object (as seen in Line 4 with an explicit instantiation of the
TextViewer component). This nesting is needed to ensure that the TextViewer
is as large as the west region will allow.

Upload/Download Buttons The west region also contains buttons for upload-
ing and downloading texts. The implementation of these functions are described in
Sections 3.4.5 and 3.4.6.

To be rendered to the page, these buttons are de�ned in the de�nition of the
west component as items of the footer's toolbar (of component type Ext.Toolbar),
fbar.

1 fbar:[{
2 text: "Upload New Text",
3 handler: Uploader,
4 icon: ’icons/book_add.png’
5 }, ’-’, downloadButton]

Again, this is an array of items, here assumed to be of the Ext.Button type if
not explicitly de�ned. This means that the �Upload� button is lazily added to the
footer (fbar). The text con�guration option speci�es the rendered button text.
The handler option speci�es a function call that will occur when the button is
clicked (here a call to Uploader()). The handler's details are explained in Section 3.4.5.
An icon that will be placed to the left of the button text (left being the default) is
speci�ed as the relative path to an image.

50

A string is the second object in fbar. This string, `-', when parsed in the context
of an Ext.Toolbar indicates a vertical spacer is to be added.

The �nal object in fbar is the variable downloadButton. This holds an
Ext.Button de�ned previously in the code (see Section 3.4.6 for more details).
This variable was used simply to cut down on the levels of nested de�nitions.

3.4.1.2 East

The east region of the page, locally referred to as the main east region, is itself
de�ned as a `border' layout so that the Chunk Viewer and Cutting Tools sections can
be resized vertically.

Chunk Viewer The Chunk Viewer portion of the UI is lazily de�ned as the �rst
item in the main east region.

1 {
2 title: ’Chunk Viewer’,
3 split: true,
4 region: ’center’,
5 layout: ’vbox’,
6 layoutConfig: {
7 align: ’stretch’,
8 pack: ’start’
9 },

10 items: [
11 Ext.apply(cutter.updater, {flex:1})
12]
13 }

The split option enables vertical resizing of the window. This region is de�ned as
the center region of the main east region with a `vbox' layout. The layoutConfig
option is an object that contains more �ne-tuning options. These specify to pack
objects starting from the top, stretching them to �ll the container horizontally.

The Chunk Viewer is itself the lone item in this center region de�ned previously
in the code as the updater to the cutter object. The cutter object is the
Visual Cutter Panel of type CutterPanel described in detail in Section 3.4.2. The
updater object is a custom component ChunkViewer. In order to ensure that the
Viewer (updater) �lls the vertical region entirely, the flex parameter is applied
with a value of 1, giving the updater priority vertical �ll. The ChunkViewer is an
extended Ext.list.ListView. Data in the list is de�ned as a JSON Store with
three �elds:

1 store: new Ext.data.JsonStore({
2 root: ’chunks’,
3 fields: [
4 {
5 name: ’chunk’,
6 type: ’int’
7 },

51

8 {
9 name: ’start’,

10 type: ’int’
11 },
12 {
13 name: ’end’,
14 type: ’int’
15 }
16]
17 })

Each �eld has two keys: a name that de�nes where that data member is located in
the data, and a type for sorting purposes. The root con�guration option speci�es
where the relevant array of data is in the loaded data object. An example of this
object is:

1 {
2 chunks: [{
3 chunk: 1,
4 start: 1,
5 end: 42
6 },{
7 chunk: 2,
8 start: 43,
9 end: 101

10 }]
11 }

An array of chunks is parsed for objects containing the three names de�ned in
the store.

The list is formatted be specifying columns to be displayed.
1 columns: [{
2 header: ’Chunk’,
3 dataIndex: ’chunk’,
4 align: ’right’
5 },{
6 header: ’Start’,
7 dataIndex: ’start’,
8 align: ’right’
9 },{

10 header: ’End’,
11 dataIndex: ’end’,
12 align: ’right’
13 },{
14 header: ’Length’,
15 tpl: ’{[values.end-values.start+1]}’,
16 align: ’right’
17 }]

Each column is de�ned by the array columns in ChunkViewer. The �rst three
columns are de�ned simply with a header specifying the displayed name of the
column, a dataIndex referencing the items in the store, and an align specifying
the alignment of the number in the cell. The �nal column is de�ned as a template
that contains a compilation of values. Since length is de�ned as end − start + 1,
there is no need to waste space storing the value in the store, so it is computed on

52

the �y in tpl. This is a string that is applied to an Ext.XTemplate. The value is
contained in the curly braces, but since length is a mathematical operation, it must
be placed in square brackets, the XTemplate notation for arbitrary code execution.

Cutting Tools The Cutting Tools panel is the south region of the main east region,
a panel containing an AutoCutter component, an extension of Ext.Container.

1 {
2 title: ’Cutting Tools’,
3 height: 400,
4 region: ’south’,
5 split: true,
6 layout: ’fit’,
7 items:[
8 new AutoCutter({
9 cutterPanel: cutter

10 })
11]
12 }

The height of the panel defaults to 400 pixels. The sole item of this panel is
an AutoCutter with the main Visual Cutter Panel (the same cutter variable
described previously) as the parameter cutterPanel.

The AutoCutter component de�nes three panels to be layed out in an `accor-
dion' layout. There is one panel for each type of cutter: simple, advanced, and visual.

The panel for the simple cutter in the items array of AutoCutter is de�ned
lazily as a panel.

1 {
2 title: ’Simple (by # of Chunks)’,
3 border: false,
4 items: [new SimpleCutter({
5 cutterPanel: cp
6 }),{
7 contentEl: ’help-simple’,
8 border: false
9 }]

10 }

This simple cutter panel contains two items, the second is a panel to which the
HTML div with the id `help-simple' is rendered. This div element is part of the
index.php page.

The �rst is a SimpleCutter component that de�nes a form to allow simple
cutter input. The sole con�guration option to the new SimpleCutter is a reference
to cutter above but stored locally in the variable cp.

The SimpleCutter component is an extension of a CutterType component
which itself extends an Ext.form.FormPanel and de�nes a �Cut� button which
responds to the �Enter� keypress. Because SimpleCutter is an extension of a form
with a button, the only item SimpleCutter requires is a form �eld:

53

1 items: [new EnterField({
2 xtype: ’numberfield’,
3 fieldLabel: ’Chunks’,
4 name: ’chunks’,
5 allowNegative: false
6 })]

The EnterField component clicks the �Cut� button on pressing the �Enter�
key. The xtype option speci�es that the �eld is to contain only numbers using
another form of component instantiation rarely used throughout the rest of the code
that references a registered string name of a component. The string `number�eld' is
registered to correspond with the component Ext.form.NumberField. The name
option speci�es how to reference the �eld when submitting the form. The �eld also
does not allow negative numbers.

The setup of the advanced cutter tool is similar to the setup of the simple cutter
accordion panel, except that instead of SimpleCutter, AdvancedCutter is used.
This too extends CutterType. The form �elds that make up AdvancedCutter
in the items array are:

1 new EnterField({
2 xtype: ’numberfield’,
3 fieldLabel: ’Size’,
4 name: ’size’,
5 allowNegative: false
6 }),
7 new Ext.form.SliderField({
8 fieldLabel: ’Last Proportion’,
9 name: ’last’,

10 minValue: .01,
11 maxValue: 1,
12 increment: .01,
13 decimalPrecision: 2,
14 value: .5
15 })

The �rst �eld is similar to SimpleCutter's sole �eld. The second �eld is an
Ext.form.SliderField. This creates a slider that ranges from .01 to 1 in incre-
ments of .01. The �eld defaults to .5.

3.4.2 Center: CutterPanel

The majority of page real estate is the center region of the screen. This section
is the CutterPanel. This panel has two portions, the Visual Cutter area and a
footer toolbar that contains the �Chunkset Name� �eld, and the �Save Chunkset� and
�Reset� buttons.

54

3.4.2.1 DiviCutter

The DiviCutter component de�ned in divitext.js �le is an extension of the
CutterPanel component. This extension de�nes the footer toolbar and functions to
load a default text and submit a chunkset to the server for saving since CutterPanel
is only responsible for displaying, cutting, and storing chunks.

Upon loading the page and subsequently instantiating a DiviCutter component,
the getDefaultText method is called. This creates an AJAX request for the �le
defaultText.txt which contains the default text seen upon loading the page.

1 getDefaultText: function() {
2 var cp = this;
3 Ext.Ajax.request({
4 method: ’POST’,
5 url: ’defaultText.txt’,
6 success: function(r,o) {
7 cp.newText(r.responseText, null);
8 var ftb = cp.getFooterToolbar();
9 if (ftb)

10 ftb.disable();
11 }
12 });
13 }

If the text is successfully loaded, the success method is called with two pa-
rameters, r and o, response and request options, respectively. The text contained in
defaultText.txt is stored in r.responseText. This is used as the �rst param-
eter in the call to the newText method of the CutterPanel. If the footer toolbar
(ftb) exists, it is disabled, because the user should not be able to save chunksets of
the default text.

The footer toolbar is built in DiviCutter's initComponent method. This
method is called upon instantiation of the DiviCutter component (it is also called,
if de�ned, in any component created thusly). The buttons and �eld are built just like
previous buttons and �elds.

1 {
2 text: "Reset",
3 icon: ’icons/arrow_undo.png’,
4 handler: cp.reset,
5 scope: cp
6 }

One note is the use of the scope con�guration option when creating buttons
like this reset button. By de�ning this option, the handler operates under the spec-
i�ed scope. Here, this in the function cp.reset refers to the object pointed
to by cp, the DiviCutter being created. Without explicitly de�ning scope,
this in cp.reset would refer to the button and not, as the method assumes,
the DiviCutter component.

55

3.4.2.2 CutterPanel

The CutterPanel component is the object that displays the text and keeps track
of spaces. This component creates an Ext.Component type to add to its list of
items to display the text. CutterPanel must be initialized with a textData
con�guration option. This contains the text to be rendered in the CutterPanel
and is assumed to exist in all setup methods of the panel.

When a CutterPanel is �rst initialized, the makePanel method is called. This
method creates a this.data object that contains data that aids in the rendering and
functioning of the CutterPanel. This object contains: a string that acts as the base
identi�er to each word in the panel (this.data.cmp); an array of words in the text
(this.data.textArray); a string containing tokens representing di�erent space
types (this.data.spaceString); the number of words and spaces and the sum
of those; an HTML string that is used to render the text (this.data.html); and
it also contains the array of selected spaces (this.data.selectedSpaces).

After the data is initialized, the cleanData method is called. This method
simply replaces all instances of < and > with their renderable HTML counterparts
< and > otherwise anything within a pair of those symbols would be treated
as HTML tags, and not displayed.

Another method is called to split the text into an array of words.
1 textArrayify: function() {
2 this.data.textArray = this.textData.trim()
3 .replace(/[\t\r\f\v\n]+/gi, " ")
4 .split(/[]+/gi);
5 }

The textArray is generated by collapsing all runs of whitespace characters into
a single space through a regular expression replace and then splits the text on these
spaces creating an array of words.

The spaceStringer method is called to shrink all whitespace in the text into
tokens representing the largest whitespace type in a run of whitespace characters.
For instance, any run of whitespace with multiple consecutive newlines are collapsed
into a single double-newline token d. Any run of whitespace with a single newline is
tokenized as an n. Any run of whitespace with only spaces and tabs are represented
as a t. And any run only containing spaces is reduced to a single s token. This is
accomplished via regular expression replaces.

With textArray and spaceString, it is possible to build the HTML that
renders the text, this.data.html. By iterating through the array of words HTML
span tags are created that contain the word and the representation of the following
associated space token. A word may be represented as:

1 <span title="103" id="cp-cmp-102"
class="cp-space-highlight">flourished.

56

This would represent word 103 (counting from 1) in the text. The span tag has a
few attributes that aid in rendering and usability. The title attribute is the number
of the word (again, counting from 1 for the sake of the user) and is rendered by the
browser as title text, i.e. text that is displayed when hovered over for a long enough
period. The id attribute is used by Ext to track the object on screen and to identify
the word to the CutterPanel. The class attribute associates a CSS rule, in this
case the rule to alter the appearance of the word when the user hovers over the word.
The displayed text is ��ourished.� followed by two HTML breaks indicating that the
word is at the end of a paragraph or stanza.

This is the case for all but the �rst and last words in the text. The �rst word
does not employ the cp-space-highlight CSS rule because the �rst word always
de�nes the start of a chunk. The last word has no trailing space.

After makePanel has �nished and the CutterPanel component is initialized,
it must be rendered. Prior to rendering, the beforerender event is �red. This
event is picked up by its listener which simply calls this.paint.

1 paint: function() {
2 var comp = new Ext.Component({html:this.data.html});
3 this.add(comp);
4 this.data.html = "";
5 }

This function creates a new Ext.Component with the con�guration option html
set to the this.data.html created in makePanel. This component comp is
added to the CutterPanel's items array via the standard add method. Nothing
has been rendered yet. The this.data.html string is then blanked in an e�ort to
save on memory.7

Similarly, the afterrender event is �red and picked up by its listener which
simply calls the this.paint2 method. This method calls this.stylize and
this.updateTable.

1 stylize: function() {
2 if (!this.canFit())
3 return;
4 for (var i = 1; i < this.data.tN; i++)
5 {
6 var e = Ext.get(this.data.cmp + i);
7 e.on(’click’, this.clickSpace);
8 }
9 }

this.stylize adds a click handler to each word in the text by iterating
through all but the �rst word in the text, identi�ed by the span's id attribute.
Each word, which was given the HTML id attribute cp-cmp-# when created (#

7Blanking-out strings to save memory may or may not work. In theory, this would indicate to
the Garbage Collector that the string is not in use and can be erased from memory. In practice,
however, this may not be the case, at least immediately.

57

represents the index of the word in this.data.textArray), is retrieved using
the Ext.get method which returns a Ext.Element object. The element can be
modi�ed, here by adding a click handler, to alter the way the element appears on
the page.

The updateTable method is detailed in Section 3.4.3.1. This call sets up initial
values in the Chunk Viewer table.

3.4.3 Clicking a Word

Each time a word in the Visual Cutter Panel is clicked, the method clickSpace in
CutterPanel is �red.

1 clickSpace: function(e, t, o, tt) {
2 var r = t;
3 if (tt)
4 r = t.dom;
5 var p = Ext.getCmp(t.parentNode.id).ownerCt;
6 var i = Number(t.id.match(/\d+/)[0]); // id # of space
7

8 // really want to select the previous space
9 if (!tt)

10 i--;
11

12 // if space is unselected, select it
13 if (p.data.selectedSpaces.indexOf(i) == -1)
14 p.addSpaces([i]);
15 else
16 p.removeSpaces([i]);
17

18 p.updateTable(e,t,o);
19 }

This method retrieves the id of the clicked span tag on Line 6, passed to the
function as the target parameter, and parses out the number. Since the actual
data stored is the space before the word, the value of the id is decreased and stored
in i. If i is in the selectedSpaces array, the break is to be removed using
removeSpaces([i]). If i is not in selectedSpaces, then a new break is to
be added using addSpaces([i]). The Chunk Viewer table is then updated. See
Section 3.4.3.1 for an explanation of the e, t, and o function parameters.

3.4.3.1 Update Chunk Viewer Table

The updateTable method is often used to update the Chunk Viewer. This method
has three parameters, event, target, and object. These are only useful in dertermin-
ing the scope of the function call. This could mean one of two things: (1) if e, t,
and o are de�ned, the function is being called from the clickSpace method (since
those are passed on click) and the scope is the scope of the Document Object Model
(DOM) object clicked; or (2) if e is not de�ned, the call is from the CutterPanel

58

itself. Depending on the case, a few variables must be set accordingly to ensure that
all the expected data can be accessed. Either way, a reference to the Visual Cutter
Panel component is stored in the local variable r.

Once this has been ensured, rows can be created to �t in the store described in
Section 3.4.1.2.

1 var list = r.updater;
2 var rows = [];
3 var spaces = r.getSpaces();
4 var end, start = 1;
5 var i = 0;
6 for (i = 0; i < spaces.length; i++)
7 {
8 rows.push({
9 chunk: i + 1,

10 start: start,
11 end: spaces[i] + 1
12 });
13 start = spaces[i] + 2;
14 }
15

16 rows.push({
17 chunk: i + 1,
18 start: start,
19 end: r.data.tN
20 });
21

22 list.getStore().loadData({ chunks: rows });

The code segment above loops through all of the spaces that have been selected
creating rows that correspond to the user's idea of word boundaries, starting at 1.
The last line updates the store of the ChunkViewer with the new data and reloads.

Another loop iterates through each node in the viewer, updating the colors to
correspond to the colors of the chunk in the Visual Cutter Panel:

1 var nodes = list.getNodes();
2

3 for (i = 0; i < nodes.length; i++)
4 {
5 var node = Ext.get(nodes[i]);
6 node.setStyle(’background-color’,
7 r.colors[i % r.colors.length]);
8 }

A call to CutterPanel.recolor updates the colors in the Visual Cutter Panel.
1 recolor: function(sp) {
2 sp = 0;
3 var word = true;
4 var totalcolors = this.colors.length;
5 var color = 0;
6

7 var i;
8 for (i = sp; i < this.data.tN; i++) {
9 word = Ext.get(this.data.cmp + i);

10

11 word.setStyle(’background-color’, this.colors[color]);
12

59

13 if (this.data.selectedSpaces.indexOf(i) == -1)
14 ;
15 else
16 color = (color + 1) % totalcolors;
17 }
18 }

The recolor method iterates through each span tag coloring the word with
the appropriate color and updating the color if the index is in the array of selected
spaces.

3.4.4 Automatic Cutters

When one of the automatic cutter tools is submitted, a call to the appropriate cut-
ting function is called with values from the �elds. When Simple Cutter is submitted,
CutterPanel.oneParamSpacer is called with the number of chunks. When Ad-
vanced Cutter is submitted, a call to CutterPanel.threeParamSpacer is made
with the size of the chunks, twice, and the last proportion size.

3.4.4.1 Simple Cutter

1 oneParamSpacer: function(chunks) {
2 var size = this.data.textArray.length / chunks;
3 size = Math.round(size);
4 this.threeParamSpacer(size, size, .5);
5 }

The oneParamSpacer method calculates the number of words needed to de�ne
chunks number of chunks and calls threeParamSpacer with the size argu-
ments. The proportional size of the last chunk defaults to 0.5 meaning that the last
chunk must be at least half of the size all of the other chunks.

3.4.4.2 Advanced Cutter

The threeParamSpacer method is used to perform both automatic cutting types.
1 threeParamSpacer: function(size, shift, last) {
2 this.emptySpaces();
3

4 var spaces = [];
5 shift = size;
6 var curr = size - 1;
7 for (; curr < this.data.tN; curr += shift)
8 spaces.push(curr);
9

10 var cut = curr - shift;
11 var lastlen = this.data.tN - cut;
12 if ((lastlen / size) > last && lastlen != 1)
13 ;
14 else
15 spaces.pop();

60

16

17 this.setSpaces(spaces);
18 this.updateTable();
19 }

The array of selected spaces is emptied so this operation overwrites all currently
selected spaces. This simpli�es some of the logic and standardizes the functionality
of a call to this method.

The loop on lines 7 and 8 adds a break point each go-around shift number of
spaces after the previous space. This creates a new array of spaces. After the loop,
the length of the last chunk is calculated. If the length is too short, the last space
placed into spaces is removed. The selectedSpaces array is updated through
the call to setSpaces. The Chunk Viewer table is then updated.

3.4.5 Text Upload

As described in Section 3.4.1.1, when the user clicks the �Upload Text� button in the
lower left of the interface, a dialog box is opened prompting the user to add a text.

The Uploader method handles the button click. This method creates a new
UploaderWindow which contains an UploaderForm. It is this UploaderForm
that handles all of the input and submission of the �le to the server.

Two �elds are added to the form in the initComponent method:
1 var namefield = new EnterField({
2 fieldLabel: ’Text Name’,
3 name: ’name’,
4 allowBlank: false
5 });
6

7 var filefield = {
8 xtype: ’fileuploadfield’,
9 fieldLabel: ’File’,

10 name: ’file’,
11 listeners: {
12 fileselected: function(f,file) {
13 var name = file.match(/[^\\\/]+\..{3}/);
14 if (name)
15 namefield.setValue(name);
16 else
17 namefield.setValue(file);
18 }
19 }
20 };

The �eld created in the variable filefield is a special �eld that opens a
browser/operating system dependant �le browser that lets the user choose a �le
from their computer to upload. This �eld has a listener that changes the text of
namefield when a �le is selected. The namefield itself is a simple text �eld
using the EnterField type discussed in Section 3.4.4 that submits the form when
the �Enter� key is pressed.

61

Upon submitting the form, the UploaderForm.upload method is called. If
the form is valid, such that the �elds are �lled, the Ext.form.submit method is
used to send an Ajax request to the server with the name of the text and the text �le
itself.

1 this.getForm().submit({
2 url: ’modules/file/uploadtext.php’,
3 method: ’POST’,
4 waitMsg: ’Uploading text... May take a while.’,
5 success: function(f,a) {
6 var tv = Ext.getCmp(’text-viewer’);
7 tv._reload();
8 tv.getRootNode().expand(true);
9 Ext.getCmp(’uploader-window’).close();

10 },
11 failure: function(f,a) {
12 report_errors(a.result.errors, "Upload Error");
13 }
14 });

This request sends the values contained in the �eld to the �le on the server at
modules/file/uploadtext.php via POST. A wait message is displayed while
the �le uploads until the server responds. If the server responds with success, the
success callback method is called. This function informs the Text Manager to
reload data from its source, as described in Section 3.4.7, and to expand the root
node so the user sees their uploaded texts. The UploaderWindow is then closed. If
the server responded with a failure message, the failure callback is called and an
array of errors is reported as described in Section 3.3.3.

After the text has been transfered to the server, the uploadtext.php script is
executed.

1 $newtext = new Text();
2 $id = $oid = Text::id_from_name($_POST[’name’]);
3 $i = 1;
4 while (array_key_exists($id, $_SESSION[’user’][’texts’]))
5 {
6 $id = $oid . "_$i";
7 $i++;
8 }
9

10 $errors = $newtext->set_data($_POST, $_FILES[’file’],
11 $_SESSION[’user’][’dir’], $id);

Immediately, an empty new Text object is created in $newtext. The Text class
provides a static function that generates an id from the name the user gave the text.
To ensure that no text has the same id, a loop checks that the id is not already the
index to an existing text. If the id (or key) in $_SESSION[’user’][’texts’]
(an associative array) exists, an increasing number is appended to the id.

A call to set_data generates data in $newtext. The function uses PHP's
$_POST and $_FILES global variables, the user's directory, and the text's id as
parameters to place the text in the right location.

62

1 if (!preg_match("/^text/", $file[’type’]))
2 {
3 trigger_error("Invalid filetype {$file[’type’]}.");
4 $errors[] = "Invalid filetype {$file[’type’]}.";
5 return $errors;
6 }

In the call to set_data, the �le is checked for type using the segment of code
above. If the text is not a plain text MIME (Multipurpose Internet Mail Extensions)
type, the �le is rejected and an error is logged and returned. This limits uploads to
TXT �les and a few other types like TEX (LATEX) �les.

1 $this->name = $post[’name’];
2 $this->size = $file[’size’];
3 $this->type = $file[’type’];
4 $this->id = $id;
5 $this->folder = $dir . "/" . $this->id;
6 $this->orig = $this->folder . "/" . $this->id . ".txt";

The local members of the Text class are set provided that the type is valid. The
folder member is an absolute path to the directory containing the uploaded text,
once moved, and orig is the original text �le itself. Using these members, the text
directory can be created and the �le moved into the directory:

1 if (!$errors && !mkdir($this->folder, 0700))
2 {
3 trigger_error("Could not create text directory ’{$this->folder}’.");
4 $errors[] = "Text dir failure.";
5 }
6

7 if (!$errors && !move_uploaded_file($file[’tmp_name’], $this->orig))
8 {
9 trigger_error("Could not move uploaded file to desination.");

10 $errors[] = "Could not move file.";
11 }

If either creating the text directory or moving the text fails, an error is triggered
and logged.

1 if ($errors)
2 rrmdir($this->folder);
3 else
4 $this->clean_text();
5 return $errors;

If any error is logged, the script attempts to remove the directory and/or text, and
the error is returned. If creating the directory and moving the text was successful,
the text is cleaned:

1 public function clean_text()
2 {
3 $text = "";
4 $FH = fopen($this->orig, ’r’);
5 while(!feof($FH))
6 $text .= trim((fgets($FH))) . "\n";
7 fclose($FH);
8

63

9 $text = preg_replace("/\s*\n\n\s*/", "\n\n", $text);
10 $text = preg_replace("/\s*\t\s*/", "\t", $text);
11 $text = preg_replace("/[]+/", " ", $text);
12

13 $FH = fopen($this->orig, "w+");
14 $len = fwrite($FH, $text);
15 fclose($FH);
16

17 $this->size = $len;
18 }

Cleaning a text entails removing all unnecessary whitespace. A loop reads in
the text one line at a time, removing whitespace from both ends of the line, and
appending a single newline that was removed. Whitespaces are then collapsed into
their largest form, similar to the way described in Section 3.4.2.2. The original �le is
then opened, truncated, and written back as the original text. The number of bytes
written is the new size of the text.

If, in the end, the text was successfully saved and cleaned, null is returned from
set_data and the text is saved to the user's list of texts:

1 $_SESSION[’user’][’texts’][$id] = $newtext;

The text's id is used as an index into an associative array of texts. A success
message is written to the page and sent to the browser. Otherwise, a failure message
will be written and returned to the browser.

3.4.6 Text Download

Clicking the �Download Texts� button triggers the handler saving a ZIP �le of to all
of the user's texts to their computer.8

1 handler: function() {
2 var body = Ext.getBody();
3 var frame = body.createChild({
4 tag:’iframe’
5 ,cls:’x-hidden’
6 ,id:’iframe’
7 ,name:’iframe’
8 });
9

10 var form = body.createChild({
11 tag:’form’
12 ,cls:’x-hidden’
13 ,id:’form’
14 ,action:’download.php’
15 ,target:’iframe’
16 });
17

18 form.dom.submit();
19 }

8I did not write much of this code. The JavaScript is from Saki's Extensions, Plugins and Know-

How at http://www.extjs.us. The PHP function downloadFile is from the PHP manual at
http://php.net/manual/en/function.header.php.

64

This function creates a hidden frame and form on the page to call the script at
download.php:

1 $FILE = "texts.zip";
2 $NEWDIR = "user.texts";
3

4 ‘mkdir $NEWDIR‘;
5 ‘mv * $NEWDIR‘;
6 ‘zip -r $FILE $NEWDIR‘;
7 ‘mv $NEWDIR/* .‘;
8 downloadFile("$FILE");
9 ‘rm -r $NEWDIR $FILE‘;

This script uses Bash Shell commands to invoke programs on the server to move,
zip, and remove �les and directories. Commands wrapped in backticks (`) invoke
shell commands. If desired, the output of these invocations can be dumped into PHP
variables.

In order to provide the user with a nice ZIP �le that doesn't extract all the texts
onto the desktop unexpectedly (a ZIP-bomb of sorts), a directory is created called
user.texts (this folder cannot be in use by a user's text because all periods are
removed from text ids that generate directories). All the user's text directories are
moved into this new directory. This directory is then zipped up as texts.zip.
The text directories are moved back to their original location, and the user.texts
directory removed.

The �le texts.zip is the �le that will be downloaded via the downloadFile
function. This function sends appropriate headers to the browser indicating that the
browser is to download a ZIP �le and prints the contents of the �le. After the �le is
printed to the page, readying it for download, the ZIP �le is removed.

3.4.7 Loading the Text Manager

Loading the Text Manager requires an Ajax call in the JavaScript by the TextViewer
component (rendering was brie�y described in Section 3.4.1.1). This is done implicitly
both on load and reload.

1 root: {
2 id: ’texts’,
3 text: ’Uploaded Library’,
4 icon: ’icons/package.png’,
5 expanded: true
6 },
7

8 dataUrl: ’modules/texts/gettexts.php’

The root con�guration option in the TextViewer component speci�es that the
�rst node in the tree is always the �Uploaded Library� node and that it is always
expanded. It also forces the tree to have a root, otherwise the tree would not be
rendered properly.

65

The dataUrl con�guration option implicitly speci�es that the tree's loader is an
Ext.tree.TreeLoader. When the tree is loaded for the �rst time, the loader is
created and an Ajax request is sent to the modules/texts.gettexts.php script.

This invokes a script on the server that will return a page of encoded JSON data
containing a valid JSON tree structure.

1 $texts = Array();
2

3 $i = 0;
4 // iterate through each Text object
5 foreach ($utexts as $tid => $text)
6 {
7 // if the key in $tid points to nothing, no text object, continue
8 if (!$text)
9 continue;

10 $texts[$i][’text’] = $text->GET_name();
11 $texts[$i][’tid’] = $tid;
12 $texts[$i][’size’] = $text->GET_size();
13 $texts[$i][’id’] = "texts/$tid";
14 $texts[$i][’type’] = "text";
15 $texts[$i][’icon’] = "icons/book.png";
16 $tcs = $text->GET_chunksets();
17

18 // if there are chunksets
19 if ($tcs)
20 {
21 $j = 0;
22 // iterate through each Chunkset in the current Text
23 foreach ($tcs as $csid => $cs)
24 {
25 // if the key in $csid points to nothing, continue
26 if (!$cs)
27 continue;
28 $texts[$i][’children’][$j][’text’] = $cs->GET_name();
29 $texts[$i][’children’][$j][’tid’] = $cs->GET_id();
30 $texts[$i][’children’][$j][’spaces’] = $cs->GET_spaces();
31 $texts[$i][’children’][$j][’leaf’] = true;
32 $texts[$i][’children’][$j][’icon’] = "icons/page_white_stack.png";
33 $texts[$i][’children’][$j][’type’] = "chunkset";
34

35 $j++;
36 }
37 }
38 else
39 {
40 // the text has no chunksets and is a leaf
41 $texts[$i][’leaf’] = true;
42 }
43

44 $i++;
45 }
46

47 echo json_encode($texts);

This loop iterates through each of the user's Text objects (Line 5) and builds
an array of texts (Lines 10-15, 41), indexed from i = 0. If the text has one or more
chunksets (Line 19), child nodes are built similarly to represent the chunkset(s) (Lines
28-33).

66

Each node in the tree must contain a few keys in order to be rendered properly
by the TextViewer. The id key of the nodes representing texts identi�es that the
text hangs o� of the texts node in the tree, i.e. the root node. The text key of
each node is the text of the node displayed in the tree, i.e. the name of the text as
entered by the user. Each node must contain the key leaf, which must be set to
true if there are no child nodes (texts without any chunksets and all chunksets) or an
array of children index by j = 0.

Each node must also store keys to add the functionality of the tree in the context
of the diviText tool. The tid key references the unique text/chunkset identi�er that
will be sent to the server when loading texts and chunksets (see Section 3.4.8 for more
about this process). The size key indicates the size of the text in bytes. This could
be used to prevent texts of too large a size from being loaded, but it is currently
unused. The type key speci�es the type of node, whether the node is a text or
chunkset. In chunksets, the spaces key is the array of spaces used to de�ne the
chunkset and allows chunksets to be reloaded into the Visual Cutter. The icon key
points to an image on the server that the tree uses as the node's icon.9

The call to echo json_encode($texts) properly formats the array of
texts as a JSON object that may look something like the following after hand for-
matting:

1 [{
2 "text":"Fates of the Apostles",
3 "tid":"FatesoftheApostles",
4 "size":4874,
5 "id":"texts\/FatesoftheApostles",
6 "type":"text",
7 "icon":"icons\/book.png",
8 "leaf":true
9 },{

10 "text":"Christ",
11 "tid":"Christ",
12 "size":17367,
13 "id":"texts\/Christ",
14 "type":"text",
15 "icon":"icons\/book.png",
16 "children":[{
17 "text":"ChristABC",
18 "tid":"ChristABC",
19 "spaces":[1668,2252],
20 "leaf":true,
21 "icon":"icons\/page_white_stack.png",
22 "type":"chunkset"
23 }]
24 },{
25 "text":"Beowulf -- Formatted",
26 "tid":"BeowulfFormatted",
27 "size":147204,
28 "id":"texts\/BeowulfFormatted",
29 "type":"text",

9Icons are from FamFamFam's Silk Icon set. See Section B.1 for usage rights.

67

30 "icon":"icons\/book.png",
31 "children":[{
32 "text":"Beowulf, 42 Fitts",
33 "tid":"Beowulf42Fitts",
34 "spaces":[113,218,845, ... ,17151,17242,17265],
35 "leaf":true,
36 "icon":"icons\/page_white_stack.png",
37 "type":"chunkset"
38 }]
39 }]

The TextViewer's loader knows how to parse this object and can properly dis-
play it.

The loader is also invoked when the TextViewer._reload method is called.
1 _reload: function() {
2 this.getLoader().load(this.root);
3 }

This method simply tells the loader to load the tree again from the root node.
Since the dataUrl option was sent, the loader knows to reload the gettexts.php
page and use the output as the new JSON object. This method is called whenever a
text is uploaded and when a new chunkset is saved.

3.4.8 Clicking in Text Manager

When a text or chunkset in the Text Manager is clicked, the click event is �red
and the click handler of the TextViewer component is called.

1 click: function(n, e) {
2 if (n != this.getRootNode() && n.attributes.type == ’text’)
3 this.selectText(n.attributes.tid);
4 else if (n.attributes.type == ’chunkset’)
5 this.selectText(n.parentNode.attributes.tid,
6 n.attributes.spaces);
7 }

This listener get passed the clicked node (argument n) and the click event (ar-
gument e). If the node is not the root node, and is of type �text,� then a node
representing a text was clicked and the text must be loaded using the selectText
method of the TextViewer component. If the node is of type �chunkset,� a chunkset
was clicked. This still results in a call to the selectText method, but to get the
id of the text to load, the clicked node's parent node must be accessed. The array of
spaces contained within the chunkset node is also sent to the selectText method
so the chunkset can be reloaded properly.

The selectText method uses the following lines to generate the proper Ajax
request:

1 Ext.Ajax.request({
2 url: ’modules/texts/gettext.php’,
3 method: ’POST’,
4 params: {

68

5 textid: id
6 },

The selectText method creates an Ajax request with POST parameters to the
PHP script at modules/texts/gettext.php. The params object sent to the
Ext.Ajax.request method de�nes a POST parameter textid. This parameter
is assigned the unique text identi�er that is to be retrieved, the variable id is the
�rst parameter sent to the selectText method.

The gettext.php script simply checks that a textid parameter was sent in
POST, and if the textid exists for the user. If both of these are true, the text of the
text identi�ed by textid is returned in a JSON object along with the text's name.

If the script returns successfully, the request's success method is called. This
method decodes the JSON object returned by gettext.php and uses the text to
populate the Visual Cutter Panel with a call to CutterPanel.newText.

If selectText received a second argument, an array of spaces because the clicked
tree node was a chunkset, the spaces are given to the Visual Cutter Panel with a call
to CutterPanel.setSpaces.

3.4.9 Save Chunkset

Saving chunksets is the most complicated of all actions performed by the server. In
summary, an Ajax request is made to the server with POST data that is needed to
cut the text, the text is cut, and the words in these cut �les are counted and saved
to the server.

1 finalize: function(name) {
2 var textid = this.tid;
3 var spacestr = Ext.encode(this.getSpaces());
4

5 if (!textid || !name)
6 return;
7

8 Ext.Ajax.request({
9 url: ’modules/texts/chunk.php’,

10 method: ’POST’,
11 params: {
12 name: name,
13 textid: textid,
14 spaces: spacestr
15 }

When the user clicks the �Save Chunkset� button at the bottom of the Visual
Cutter Panel, the DiviCutter.finalize method is called and passed the name
of the chunkset to be created. The id of the current text is retrieved from the Cutter
Panel, and the current array of spaces is encoded as a string in JSON notation.

An Ajax request is then made to the script modules/texts/chunk.php.
Three parameters are sent, the name of the chunkset, the text's unique id, and the
string-encoded array of spaces.

69

The chunk.php script makes sure that all the required data is present and that
the text identi�ed by textid is accessible. The string-encoded array of spaces is
decoded back into an array. Using this information, the chunk method of the Text
object indexed by textid is called with the array of spaces and the name of the
chunkset.

This method generates a unique identi�er for the chunkset similar to the way the
text's unique identi�er was set up in Section 3.4.5.

1 $cs = new Chunkset();
2 $cs->SET_name($csname);
3 $cs->SET_id($csid);
4 $cs->SET_folder($this->folder . "/" . $csid);
5 $cs->chunk($textstr, $spaces);

A new Chunkset object is created and some attributes are set similar to a Text's
attributes. The folder attribute is created by creating a directory o� of the text's
directory with the chunkset's id as the name. The Chunkset::chunk method cuts
a string ($textstr) on the requested spaces ($spaces).

1 $this->spaces = $spaces;
2 $cwd = getcwd();
3 mkdir($this->folder, 0700);
4 chdir($this->folder);
5

6 $folders = array("clean/txt", "clean/csv", "orig/txt", "orig/csv");
7

8 foreach ($folders as $f)
9 {

10 if (!mkdir("./$f", 0700, true))
11 $errors[] = "Could not make folder ’$f’.";
12 }
13

14 $out = $this->chunker($text, $spaces, "orig");
15 $out2 = $this->chunker($text, $spaces, "clean");
16

17 chdir($cwd);

The Chunkset::chunker method creates two directories o� of the chunkset's
folder, one for a clean version of the text (i.e. chunks without any punctuation
or capitalization) and an original folder (i.e. chunks that retain original punctuation
and capitalization, but not original whitespace). Two directories hang o� of each of
these, a directory containing word counts in Comma Separated Value (CSV) �les and
a directory containing the text of the chunks.

The Chunkset::chunker method is called twice, once to chunk without re-
moving punctuation and once to chunk a clean text. The �rst few lines of chunker
split the string containing the text into an array of individual words.

1 $text = collapse_spaces($text);
2 $textarr = split_string($text);
3 $chunksarr = split_on_spaces($textarr, $spaces);

The call to collapse_spaces uses a regular expression replace to change all
runs of whitespace with a single space character. The subsequent call to the method

70

split_string uses the fact that all words are separated by one and only one space
to create an array containing only words.

The next call to split_on_spaces uses the array of spaces to subdivide the
array of words into an array of of chunks, where each chunk is represented by an array
of words in the chunk.

1 function split_on_spaces($textarray, $spaces)
2 {
3 $chunkarray = null;
4 $spaces[] = count($textarray) - 1;
5

6 $start = 0;
7 foreach ($spaces as $s => $sp)
8 {
9 $end = $sp;

10 $length = $s ? $end + 1 - $start : $end + 1;
11 $chunkarray[$end] = array_slice($textarray, $start, $length, true);
12 $start = $end + 1;
13 }
14

15 return $chunkarray;
16 }

The split_on_spaces method adds the index to the last word in the text to
the list of spaces, since the end of the �nal chunk was not added by the JavaScript
CutterPanel component. The method then iterates through the array of spaces
using each number in the array to determine the last word in the chunk, the length
of the chunk and the �rst word in the next chunk. The $chunkarray variable is
the array of chunks indexed by the index of the last word in the chunk. This saves
the value for future use.

1 if ($style == "clean")
2 $chunksarr = remove_junk($chunksarr);

Back in the chunker method, if the style was speci�ed as �clean�, punctua-
tion and capitalization is removed from each word in each chunk array using the
remove_junk method.

1 $chunkhashes = null;
2 foreach($chunksarr as $end => $chunkarr)
3 $chunkhashes[$end] = count_words($chunkarr);

The array of words in each chunk is now ready to be transformed into an asso-
ciative array (or hash table, referred to as a �hash�) of word counts indexed by word.
Each array of words representing a chunk in $chunksarr is iterated through to
create an array of hashes. This array of hashes is too indexed by the index of the last
word in the index of the last word in the chunk.

1 function count_words($textarray)
2 {
3 $wordcount = array();
4 foreach ($textarray as $word)
5 {
6 if ($word == "")

71

7 continue;
8 $wordcount["$word"] = isset($wordcount["$word"]) ?
9 $wordcount["$word"] + 1 : 1;

10 }
11

12 return $wordcount;
13 }

The count_words method takes a single array of words representing a chunk
and builds a hash of word counts by increasing the count of a word each time it
appears in the array. If the word is the empty string, because it was all punctuation
and thus the string emptied in remove_junk, it is skipped over. The hash of the
counts indexed by word is returned.

Returning to chunker, the array of hashes is then iterated through and printed
to �les.

1 foreach ($chunksarr as $end => $chunkarr)
2 {
3 $out = $this->write_txt($chunkarr, $endpad, $style);
4 $out2 = $this->write_csv($chunkhashes[$end], $endpad, $style);
5 }

Each chunk array and chunk hash is then printed to a �le with the chunkset's id
followed by the index of the last word in the chunk. Note that the index is padded
with zeros at the front so the �les are properly sorted by name by the user's operating
system (not shown in code above).

To write the text �le, the array of words is simply imploded (words are concate-
nated) with a space separating each word in write_txt. This is the reason that
original whitespace is not preserved.

Writing the CSV �le is slightly more complicated. The write_csv method is
shown below:

1 $total = get_total($hash);
2 $unique = get_unique($hash);
3 $hapax = get_hapax($hash);
4

5 hash_sort($hash, ’c’);
6

7 $csv = $this->id . "txt,$total,$unique,$hapax\n";
8 $csv .= "RANK,WORD,COUNT,RELATIVE FREQUENCY\n";
9 $rank = 0;

10 $allrank = 1;
11 $prevcount = null;
12

13 foreach ($hash as $word => $count) {
14 $prop = round(($count / $total), 10);
15

16 if ($count != $prevcount)
17 $rank = $allrank;
18 $prevcount = $count;
19 $allrank++;
20

21 $csv .= "$rank,$word,$count,$prop\n";
22 }

72

A few statistics must be calculated: the number of total, unique, and hapax (words
that appear only once) words are calculated. The hash is then sorted by word count
and subsorted so that the words with equal counts are in (English) alphabetic order.
Some header information is then stored to the $csv variable that will be printed to
the �le.

The list of words, sorted by count, is then iterated through. The relative frequency
is calculated for each word in the chunk. If the count of the current word is not the
same as the count of the previous word, the rank of the word is updated. This allows
all words with the same count to be assigned the same rank. The current word's line
in the CSV �le is then appended to $csv.

If everything succeeded without error, the new Chunkset object is added to the
array of chunksets in the user's Text object indexed by the chunkset's unique id.
Success is returned to the page.

The TextViewer component is then told to reload its data and thus the new
chunkset is added to the tree.

73

Chapter 4

Use Cases

This chapter is a guide to the user showing some basic examples using the diviText
tool. Section 4.1 shows a toy example using all three cutting methods: Visual, Simple,
and Advanced. Section 4.2 shows a real-world use by showing how to cut the Anglo-
Saxon text Beowulf into �tts and what the user gets after downloading the results.
Other potential use cases are mentioned. Note that high contrast colors have been
used in these examples to make the chunks stand out more in print.

4.1 Toy Example

In the following sections, examples of the Visual, Simple, and Advanced cutting tools
are illustrated through the use of a short piece of the lorem ipsum text commonly
found as placeholder text in graphic design.

Before using any cutting tools, the user must upload their text to the server. Once
the diviText interface is loaded, the user would select the �Upload Text� button in
the lower left of the interface (refer back to Figure 3.1). This opens the upload dialog
box shown in Figure 4.1.

Figure 4.1: The Upload Text dialog box. The mouse indicates the �Browse...� button that

opens a window to select a �le from the user's computer.

74

Clicking the �Browse...� button opens a browser/operating system speci�c �Open�
window (a Chrome and Windows 7 �Open� window is shown in Figure 4.2). The
loremshort.txt �le has been selected and the �Open� button is about to be
clicked. This returns control back to the Upload dialog box.

Figure 4.2: The Open �le window. The �le �loremshort.txt� has been selected and the

�Open� button is about to be clicked.

Figure 4.3a shows that the �le is ready to be uploaded and a name has been auto-
matically �lled in. In this example, assume that this default name is unsatisfactory,
so by double-clicking in the �Text Name� input �eld, the name is highlighted and
ready to be overwritten. The text is then renamed �Lorem Ipsum - Two Paragraphs�
(shown in Figure 4.3b). Once overwritten, the user is ready to upload the �le and
does so by clicking the �Upload� button (also shown in Figure 4.3b).

(a) (b)

Figure 4.3: The user has decided that the automatically generated text name was not satis-

factory and double-clicked the �eld (a) and set the name to �Lorem Ipsum - Two Paragraphs�

and (b) is ready to upload the text by clicking �Upload�.

To open the �le into the cutting window, the user clicks the text in the tree with
the name �Lorem Ipsum - Two Paragraphs� as shown in Figure 4.4.

This opens the text into the Visual Cutter as shown in Figure 4.5.

75

Figure 4.4: The text has been uploaded and the text is ready to be opened by clicking the

text in the Text Manager. Note, that in this example the Text Manager pane (left) has been

shrunk in width to the smallest size in order to maximize the Visual Cutter Panel area.

4.1.1 Using Visual Cutter

Figure 4.5: The �Lorem Ipsum - Two Paragraphs� text has been opened and is ready to be

cut with Visual Cutter.

Assuming that a text has been opened, Visual Cutter is active and can be used
to chunk the text into smaller, user de�ned pieces. This section shows how to cut the
text into four chunks, making and correcting a mistake along the way.

Figure 4.5 shows the �Lorem Ipsum� text just after loading it into the Visual
Cutter. The user wishes to cut the text into four chunks: (1) �Lorem� to �ipsum.� (2)
�Curabitur� to �himenaeos.� (3) �Donec� to �imperdiet.� and (4) �Donec� to �erat.�
This should produce four chunks, each about half a paragraph in length, each ending
on a sentence boundary.

To accomplish this, the user �rst moves the mouse to the start of the second chunk,
�Curabitur� and clicks the word (or the space after the word which is simultaneously
highlighted), thus setting the �rst boundary. This is shown in Figure 4.6(b).

Similarly, to create the �Donec� to �imperdiet.� chunk, the user would highlight
the word �Donec� and click it. The highlighting and result of the click are shown in
Figure 4.7.

76

(a) (b)

Figure 4.6: The results of highlighting (a) and clicking (b) the word �Curabitur� in the

Visual Cutter to split the �rst paragraph into two chunks.

(a) (b)

Figure 4.7: The results of highlighting (a) and clicking (b) the word �Donec� at the start of

the second paragraph in the Visual Cutter.

(a) (b)

Figure 4.8: The results of highlighting (a) and clicking (b) the word �In� in the second

paragraph in the Visual Cutter. This is a mistake, as the user really wanted to click the

word �Donec�.

77

When creating the last chunk from �Donec� to �erat.�, the user accidentally high-
lighted and clicked the word �In� as shown in Figure 4.8.

This is not the chunk that the user intended to de�ne. To remedy the error, the
user highlights and clicks the word �Donec�, the true start of the fourth and �nal
chunk (see Figure 4.9). This produces a �fth chunk. To remove the erroneous chunk
beginning with the word �In� and ending with the word �imperdiet.�, the user simply
highlights and clicks the word �In� again, resulting in Figure 4.10.

(a) (b)

Figure 4.9: The user highlights (a) and clicks (b) the word �Donec� as was the original

intention from Figure 4.8.

(a) (b)

Figure 4.10: To �x the mistake made in Figure 4.8, the user simply clicks the mistake word

�In� again.

Assuming that the user is satis�ed with this chunkset, the name of the chunkset
is set to �Four Chunks� in the �Chunkset Name� text �eld. Clicking �Save Chunkset�
saves the chunkset to the server.

78

4.1.2 Using Simple Cutter

In this version, the user wishes to create a chunkset containing four chunks of equal
size. To do this, the Simple Cutter tool is employed.

Opening the �Simple (by # of Chunks)� pane on the right side of the screen, the
user can specify a value of �4� chunks in the �Chunks� number �eld (see Figure 4.11).
Clicking the �Cut� button removes all previous chunks and creates four almost equally
sized chunks of 84 words (shown in Figure 4.12). The last chunk is one word longer
than the other three chunks, but this is okay since the length of the text, 337 words,
is not evenly divisible by 4 chunks.

The chunkset is saved with the name �Four Equal Chunks.�

Figure 4.11: The user has entered a value of 4 in the Simple Cutter �Chunks� �eld and is

about to click the �Cut� button.

Figure 4.12: The user has clicked �Cut� and the text has been rechunked according to the 4
chunk parameter.

4.1.3 Using Advanced Cutter

Using the Advanced Cutter tool, assume the user decides to cut the text into chunks
of exactly 80 words each. To do this, the user expands the �Advanced (by Chunk
Size)� pane just below the Simple Cutter tool.

79

Figure 4.13 shows that the user has entered a value of 80 in the �Size� �eld and
clicked the �Cut� button. This chunks the text into four chunks, three of size 80 and
one of size 97. The �nal chunk is longer than the rest because 80 words per chunk
is not evenly divisible by 337 words in the text. The extra 17 words was added to
the last chunk because 17 words is not greater than half the size of all of the other
chunks. This half value is the default value of the �Last Proportion� slider that the
user did not change.

Figure 4.13: The user has chunked the text into chunks of exactly 80 words using the

Advanced Cutter tool. The last chunk is 97 words.

Alternately, by dragging the slider to a value of 0.15, as shown in Figure 4.14,
the user has decided that the last chunk of 17 words should belong in its own chunk,
because 80× 0.15 = 12 which is less than the 17 extra words. The resulting chunkset
is shown in Figure 4.15.

Figure 4.14: The user has decreased the �Last Proportion� slider to a value of 0.15 which

requires that the last chunk must be at least 12 words to be in its own chunk.

As before, the chunkset is saved, this time as the user-de�ned name �80 Word
Chunks + 17�. The resulting Text Manager having used all three cutting methods is
shown in Figure 4.16.

80

Figure 4.15: The result of an Advanced Cutter cut of chunk size 80 and a last proportion

of 0.15. The �nal 17 words now constitute their own chunk.

Figure 4.16: The Text Manager after walking through this toy example. There are three

chunksets belonging to the �Lorem Ipsum - Two Paragraphs� text. The text with chunk

breaks for any chunkset can be retrieved by clicking on the chunkset.

4.2 Real-World Examples

This section shows a real-world application of the diviText tool by cutting the poem
Beowulf into �tts and mentions other possible uses of the tool.

4.2.1 Beowulf in Fitts

Anglo-Saxon scholars are interested in the epic poem Beowulf. Since Beowulf is
naturally broken into 42 �tts, or sections, scholars tend to study the poem at the

81

�tt-level.
Since �tts are not evenly spaced, it is a time-consuming process to break the poem

into �tts. Using old methods, the scholar would open the poem in a text editor, copy
and paste each of the 42 �tts into their own �le, and name each �le manually. At the
least, this is potentially error-prone.

Using the diviText tool, this is no problem and only takes a few minutes. To cut
the text into the 42 �tts, only 41 clicks are required, plus clicks for uploading the text,
saving the chunkset, and downloading the text. This is far faster than alternative
methods.

4.2.2 Other Examples

Other uses for the diviText tool have been discussed.
One such use is to cut up the Federalist Papers to study the authorship of the

papers. Of the 85 papers, 73 are known to be written by Alexander Hamilton, James
Madison, or John Jay. This means that 12 of the papers have disputed authorship.
Using the Visual Cutter, scholars can quickly cut a �le containing all the papers down
into 85 individual papers and get word frequencies for further analysis.

Another proposed use concerns texts of the Harlem Renaissance. Scholars of
African-American literature of the middle twentieth century wish to determine how
sections of text may have in�uenced or been in�uenced by sections of other texts or
authors (Drout et al., 2010).

82

Chapter 5

Conclusions

This thesis has covered a wide variety of topics regarding �text mining.� diviText was
developed to aid in the �rst steps of the text mining process.

Chapter 2 outlined the topics of data and text mining. Since text mining has
speci�c needs, tools have been developed by people in the text mining �eld. Some of
these tools are featured in Section 2.2 and Appendix A.

The need for a tool to aid in text segmentation led to the development of diviText.
Chapter 3 detailed the functionality of diviText; Chapter 4 showed how users interact
with diviText.

5.1 Future Work

There is still much that can be done to improve the functionality, usability, and
stability of diviText in versions 2 and beyond.

5.1.1 Functionality

Many features were discussed when drafting diviText on paper but time did not allow
everything to be incorporated into the �nal product. The most glaring omission is
that diviText can only segment texts. The next steps would include adding a second
stage in the pipeline that allows a user to proceed to perform clustering and/or
classi�cation analyses on their segmented texts through the diviText interface. This
would involve implementing a way to group texts, chunksets, and chunks into logical
sets. A single word count/relative frequency table (a merged set of texts) would be
calculated and added to the ZIP �le the user downloads.

Another feature that didn't make it into the �nal product was the ability to
arbitrarily segment texts, for example, to make overlapping chunks. The original
idea for Visual Cutter was to allow users to place arbitrary start and end points for

83

chunks of text. This would allow overlapping segments and the use of Simple and
Advanced Cutters on subsets of the text.

5.1.2 Usability

While Visual Cutter is an advancement over previous segmentation tools that oper-
ated on the command-line, issues were discovered during use-case testing. The biggest
issue was how users wanted to deselect chunks. Most users clicked the word prior to
the word they should have clicked. At present, this is not so much a bug, but a
feature; however, future consideration will be given to this issue depending on user
feedback.

Users also wanted to upload texts that were not raw text, e.g. Word documents,
XML, and texts with non-English character sets (e.g. Russian poems). Future versions
could handle XML, at the very least. �Hooks� have been placed into diviText to handle
such extensions. In addition, the capability to upload multiple �les at once could also
be handled.

Another feature in the list of �it would be nice to have...� is the ability for the
user to control the coloring of text segments. The current colors were chosen because
they were neutral but distinguishable. The lack of contrast in the colors, di�erences
between monitors, and user-speci�c variables like colorblindness may be an issue for
some users.

5.1.3 Stability

As with most version 1 tools, issues were encountered when users did unexpected
things, for example, uploading texts that were not encoded as raw ASCII text. Texts
that include symbols not within the range of simple Roman characters, Arabic num-
bers, and simple punctuation produce unde�ned behavior (usually uploading stops
when the �rst non-ASCII character is found and the remaining text is truncated).

A few menus in the diviText interface do not work quite right. After right-clicking
a text in the Text Manager, menu options do not show on subsequent clicks and the
page must be refreshed.

Additional items to consider for future work include the fact that Visual Cutter
does not handle large texts well. Since every word is a clickable object, each word has a
non-negligible memory footprint, perhaps past the memory allocation limit in FireFox
of 1GB of RAM. Currently diviText limits the total number of words to 75, 000 when
using Visual Cutter, although longer texts can still be cut with Simple and Advanced
Cutters. This is signi�cant in the context of potentially hundred-thousand plus word
texts. This could be �xed with a revamp of Visual Cutter. In version 2, Visual Cutter
might only create an object when words and/or spaces are clicked and not for every

84

word. Also, when handling large texts, texts may not be rendered properly if words
and corresponding following spaces become unaligned. The system might not alter
the user's text until segmentation, and then only alter a copy of the original text.

While diviText is only in its infancy, it is a welcome replacement for old text
segmentation tools. Positive feedback from users have shaped diviText into its current
form and set our goals for future functionality.

85

Appendix A

Clustering Using Other Tools

To demonstrate clustering using the built-in functionality provided by other text
analysis tools, a simple data set was created to give fairly expectable results. This
dataset, seen in Table A.1, contains seven `texts' labeled `T1' through `T7' with
which contain the �ve words `and', `the', `some', `people' and `that.' Each of the
texts contains some combination of ten of these words each.

text and the some people that
T1 10 0 0 0 0
T2 5 5 0 0 0
T3 0 0 10 0 0
T4 2 2 2 2 2
T5 0 0 0 5 5
T6 0 0 0 1 9
T7 0 0 0 0 10

Table A.1: The sample dataset containing seven texts (T1-T7), of �ve unique and ten total

words each.

The �rst header row contains the list of unique words found in the collection of
seven texts. Each subsequent row corresponds to a single text where the text name is
the very �rst item in the row (e.g. `T1' corresponds to `Text 1'). Subsequent columns
indicate counts of a word in the text row where it is found.

It should be noted that in each example, clusters are based on raw word frequen-
cies. This works here because each text contains the same number of total words. In
an example where this would not be true, relative frequencies (word counts divided
by the total number of words in a text) would be used in place of raw frequencies to
account for variation in the length of the texts.

86

A.1 Meandre

One of Meandre's pre-installed work�ows is a clustering �ow, seen in Figure A.1
(SEASR, 2010). Only one change has to be made for the �ow to run correctly; the
file_url parameter of the Input URL or Path component must be changed to
point to the dataset either on the web or local machine. The input for this �ow is
a delimited �le, like the one above, but with one small change, seen in Table A.2.
Meandre requires an additional row (see row 2 in Table A.2) that designates a data
type for each column.

Figure A.1: The cluster �ow as seen in Meandre.

text and the some people that
String int int int int int
T1 10 0 0 0 0
T2 5 5 0 0 0
T3 0 0 10 0 0
T4 2 2 2 2 2
T5 0 0 0 5 5
T6 0 0 0 1 9
T7 0 0 0 0 10

Table A.2: The sample dataset with changes required for Meandre.

Upon running the �ow, Meandre prompts for input and output attributes. The
input attributes correspond to the variables used in the cluster analysis; in this ex-
ample, these are the word counts. The output attribute is simply what Meandre will
use to label the pieces of the clusters, i.e. the text names. The initial unselected and
subsequent properly selected attributes can be seen in Figures A.2a and A.2b.

87

(a) Unselected (b) Selected

Figure A.2: Input and output attribute selection. Inputs attributes are word types, and

output attributes are the text names used to label items in each cluster.

Figure A.3: Dendrogram created by Meandre when using the cluster work�ow. The stretch-

ing and window placement were manipulated by hand to appear as shown. The dendrogram

indicates through the smallest clade, located on the right, that T6 and T7 cluster most

closely together. This is explained by the single word di�erence in the texts (T6 contains

one instance of the word `people' not seen in T7).

When the clustering is completed, Meandre creates the dendrogram seen in Fig-
ure A.3. Meaning is only applied to the output when a cluster is selected. When a
cluster is selected a window pops up containing the texts placed in the cluster and the
respective word counts. These windows must be manually arranged to easily identify
clusters. This has been done in Figure A.3. These lists would easily get unruly with
larger datasets containing more texts or, worse still, when more words are involved.

88

A.2 Python: NLTK and SciPy

Using Python, and the right tools from the right packages, a dendrogram can be
obtained (Bird et al., 2009). The science package, SciPy, contains the two required
hierarchical clustering and dendrogram-building functions.

Listing A.1 is the script to run a cluster on the sample dataset. The data was
entered by hand for simplicity's sake, but for a more complex example, texts and
word counts would be read from �les using readers like those found in NLTK.

Listing A.1: Script to build a simple dendrogram for the sample data.

1 import pylab
2 from scipy.cluster import hierarchy
3 from numpy import array
4

5 vectors = [array(f) for f in [[10,0,0,0,0], [5,5,0,0,0], [0,0,10,0,0], [2,2,2,2,2],
[0,0,0,5,5], [0,0,0,1,9], [0,0,0,0,10]]]

6 texts = [’T1’, ’T2’, ’T3’, ’T4’, ’T5’, ’T6’, ’T7’]
7 Z = hierarchy.linkage(vectors, method=’centroid’, metric=’euclidean’)
8 d = hierarchy.dendrogram(Z, labels=texts)
9 pylab.show()

First, this script imports a few required packages. The pylab package is used
to render the dendrogram. From the scipy.cluster package, hierarchy is
imported. By importing these, needlessly long function calls can be shortened from
scipy.cluster.hierarchy.linkage to hierarchy.linkage. From numpy
(the mathematical package), the array function is imported because arrays are
data types expected for text vectors.

The hierarchy class contains two important methods, linkage and dendrogram.
The linkage method clusters a set of vectors, one vector per text. Here, the vector
is the array of word frequencies. In this example, the centroid method is used for
calculating distance in euclidean space. The other method, dendrogram, builds the
dendrogram, Figure A.4, using the output from linkage, stored in linkage matrix
Z, and the list of text names as labels.

A.3 R

R, the statistical and graphics programming language, is well equipped to handle
this simple clustering example. Without any third-party packages, R is capable of
creating publication quality dendrograms based on results of a hierarchical cluster.
The script is seen in Listing A.2.

First, text names are put into an R list (line 1). The following seven lines create
separate lists for the counts of words per text. The method cbind creates a matrix

89

Figure A.4: SciPy's dendrogram output for the sample data. The left axis measures the

amount of similarity. The topology in this dendrogram is quite di�erent than the topology

of Meandre's dendrogram due to the use of the �centroid� linkage method. SciPy directly

links T1 and T2 while Meandre links T2 and T4, and then T1 to that clade.

of word counts, but this puts texts into columns, not rows. To correct for this, the
t, matrix transposition, method switches rows and columns before calculating the
distance matrix required to cluster (lines 13 and 14). This distance matrix, vdist,
is passed to hclust to perform the hierarchical cluster with default parameters
method=complete.

Following line 14, the clustering is �nished, and all that remains is rendering the
dendrogram. The png method builds a Portable Network Graphics (.png) �le with
the supplied name. The method plot uses the results from the cluster to render the
dendrogram. Texts names in texts are supplied as the labels for each leaf, and
Cluster Results is the dendrogram title. The �nal line, dev.off(), shuts o�
the writing ability and �nalizes the PNG �le. The results are shown in Figure A.5.

90

Listing A.2: R script to perform hierarchical cluster on the sample dataset.

1 texts <- c(’T1’, ’T2’, ’T3’, ’T4’, ’T5’, ’T6’, ’T7’)
2

3 t1 <- c(10,0,0,0,0)
4 t2 <- c(5,5,0,0,0)
5 t3 <- c(0,0,10,0,0)
6 t4 <- c(2,2,2,2,2)
7 t5 <- c(0,0,0,5,5)
8 t6 <- c(0,0,0,1,9)
9 t7 <- c(0,0,0,0,10)

10

11 vectors <- cbind(t1,t2,t3,t4,t5,t6,t7)
12

13 vdist <- dist(t(vectors))
14 result <- hclust(vdist)
15

16 png("cluster_dendro_from_r.png")
17 plot(result, labels=texts, main="Cluster Results")
18 dev.off()

A.3.1 R using RPy

By using the RPy package in Python, R commands can be executed through the
Python environment and data can be passed from Python to R and vice versa.

The R code, with regards to clustering and rendering, is almost identical to that
used in the R example in Section A.3, with only a few minor changes to account for
the use with Python. This script is shown in Listing A.3.

Listing A.3: Script in Python implementing a cluster of the sample dataset using RPy to

create an R environment.

1 from rpy import r
2 from numpy import array
3

4 vectors = array([[10,0,0,0,0], [5,5,0,0,0], [0,0,10,0,0], [2,2,2,2,2], [0,0,0,5,5],
[0,0,0,1,9], [0,0,0,0,10]])

5 texts = [’T1’, ’T2’, ’T3’, ’T4’, ’T5’, ’T6’, ’T7’]
6

7 r.assign("vectors", vectors)
8 r(’vdist <- dist(vectors)’)
9 r(’result <- hclust(vdist)’)

10

11 r(’png("cluster_dendro_from_rpy.png")’)
12 r.assign("texts", texts)
13 r(’plot(result, labels=texts, main="Cluster Results")’)
14 r(’dev.off()’)

First, r is imported from the rpy package. This is the main method that runs
the R environment in Python. The array method is imported from NumPy to build
a matrix-like data structure that RPy can form into an R matrix.

91

Figure A.5: Dendrogram resulting from R when clustering the sample dataset. Here, the

topology slightly di�ers from that of SciPy but is similar to Meandre's. These di�erences

are caused by di�erent default clustering parameters. R and Meandre default to �complete�

linkage.

The word counts are hand entered into a list of Python lists which is then put
into an array so RPy can build an R matrix. The text names are then put into a
Python list (line 5).

The r.assignmethod passes data from the Python matrix-like variable vectors

92

into the R matrix variable vectors. Line 8 calculates the distance matrix within
the R environment, this time without the transposition function because the texts
were built in rows in Python. This is then clustered using the same process as before.

Finally the PNG �le is built, but before the texts can be used in the rendering,
the Python list texts is assigned to the R vector variable texts (line 12).

The resulting dendrogram is exactly the same as Figure A.5. This method has
proven best due to the ease of inputting the sample data and high quality dendrogram
output.

93

Appendix B

Licensing and Source Code

This Appendix addresses issues not covered elsewhere in the main thesis regarding
the licensing of this code and where the source code can be found.

diviText is available for free use, redistribution, and/or modi�cation online at
http://cs.wheatoncollege.edu/~amos/divitext.

B.1 Licensing

ExtJS is not a free JavaScript framework. It can, however, be used freely if all the
source code that uses ExtJS is made free and open source under the GNU General
Public License, GPLv3. The terms of the license can be found at http://www.
gnu.org/licenses/.

In accordance with the GPL, the following text is added to the source of each �le.

diviText is a graphical text segmentation tool for use in text mining.
Copyright (C) 2011 Amos Jones and Lexomics Research Group

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

94

Icons in both diviText and the images of diviText in this document are part
of the FamFamFam Silk Icon Set licensed under the Creative Commons 2.5 Attri-
bution License. This license provides provisions to both use and alter these icons
with attribution to the original author. These icons can be found at http://www.
famfamfam.com/lab/icons/silk/.

B.2 Source Code

The source code for all of diviText is made available in a number of ways.
The �rst is by accessing the �Download Source� link at the bottom of the diviText

webpage. This link provides a ZIP of a recent snapshot of the code that is running
live on the server. It will not always be updated after minor changes, but any feature
addition or large bug removal should warrant an update.

The code can also be found by accessing the Google Code repository created for
diviText. This can be found at http://divitext.googlecode.com. Google
Code provides a free web front end that allows users to browse and obtain the code
repository including old revisions of committed code. Using Mercurial, a source con-
trol program, users can clone the current copy of the code to their local machine.

This document was turned in to the Wheaton College Registrar with a CD con-
taining the most recent (as of May 12, 2011) source code.

95

Bibliography

The British National Corpus, version 3 (BNC XML Edition). Distributed by Oxford
University Computing Services on behalf of the BNC Consortium. http://www.
natcorp.ox.ac.uk/, 2007.

Ács, Bernie; Llorà, Xavier; Auvil, Loretta; Capitanu, Boris; Tcheng, David; Haber-
man, Mike; Dong, Limin; Wentling, Tim; and Welge, Michael. A General Approach
to Data-Intensive Computing using the Meandre Component-Based Framework.
Proceeding Wands '10 Proceedings of the 1st International Workshop on Work�ow
Approaches to New Data-centric Science, 2010.

Archer, Dawn (ed). What's in a Word-list? Ashgate: Bodmin, Cornwall, 2009.

Berry, Micheal W. (ed). Survey of Text Mining: Clustering, Classi�cation and Re-
trieval. Springer: New York, NY, 2004.

Bird, Stephen; Loper, Edward; and Klien, Ewan. Natural Language Processing with
Python. O'Rielly Media Inc., 2009.

Carroll, Lewis. Alice's Adventures in Wonderland. Macmillan, 1865.

Cunningham, Hamish; Maynard, Diana; Bontcheva, Kalina; Tablan, Valentin;
Aswani, Niraj; Roberts, Ian; Gorrell, Genevieve; Funk, Adam; Roberts, Angus;
Damljanovic, Danica; Heitz, Thomas; Greenwood, Mark; Saggion, Horacio; Pe-
trak, Johann; Li, Yaoyong; and Peters, Wim. Developing Language Processing
Components with GATE Version 6 (a User Guide), 2010.

Davies, Mark. CORPORA: 45-400 million words each: free online access. http:
//corpus.byu.edu/, 2008a.

Davies, Mark. The Corpus of Contemporary American English (COCA): 410+ million
words, 1990-present. http://www.americancorpus.org, 2008b.

Davies, Mark. Word Frequency in Context: Alternative Architectures for Examining
Related Words, Register Variation and Historical Change. In Archer, Dawn (ed),
What's in a Word-list? Ashgate: Bodmin, Cornwall, 2009.

96

Davies, Mark. The Corpus of Historical American English (COHA): 400+ million
words, 1810-2009. http://corpus.byu.edu/coha, 2010.

Drout, Michael D. C.; Kahn, Micheal J.; and LeBlanc, Mark D. Lexomic Tools and
Methods for Textual Analysis: Providing Deep Access to Digitized Texts. National
Endowment for the Humanities � NEH Grant #PR-50112011, 2010.

Drout, Michael D. C.; Kahn, Micheal J.; LeBlanc, Mark D.; and Nelson, Christina. Of
Dendrogrammatology: Lexomic Methods for Analyzing the Relationships Among
Old English Poems. Journal of English and Germanic Philology, 2011.

Friedman, Nir and Kohavi, Ronny. Bayesian Classi�cation. In �ytkow, Jan M. and
Klösgen, Willi (eds), Handbook of Data Mining and Knowledge Discovery, pages
282�288. Oxford University Press, Inc.: New York, New York, 2002.

Hart, Michael. Project Gutenberg. http://www.guenberg.org, 2011.

Healey, Antonette diPaolo; Haines, Dorothy; Holland, Joan; McDougall, David; Mc-
Dougall, Ian; and Xiang, Xin. The Dictionary of Old English Corpus in Electronic
Form. [CD-ROM], 2004.

Healey, Antonette diPaolo; Haines, Dorothy; Holland, Joan; McDougall, David;
McDougall, Ian; and Xiang, Xin. Dictionary of Old English � Tools. http:
//www.doe.utoronto.ca/tools/tools.html, 2009.

Jurafsky, Daniel and Martin, James H. Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Pearson Education, Inc.: Upper Saddle River, New Jersey, 2 edition,
2009.

Kantardzic, Mehmed M. and Zurada, Jozef (eds). Next Generation of Data-Mining
Applications. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2005.

Kleinman, Scott. The Impact of Lemmatization of Lexomic Hierarchical Clustering
of Old English Texts. Presented at Forty-sixth International Congress on Medieval
Studies May 12-15, 2011.

Kohavi, Ronny and Quinlan, J. Ross. Decision-Tree Discovery. In �ytkow, Jan M. and
Klösgen, Willi (eds), Handbook of Data Mining and Knowledge Discovery, pages
267�276. Oxford University Press, Inc.: New York, New York, 2002.

Kononenko, Igor and Kukar, Matja�z. Machine Learning and Data Mining: Introduc-
tion to Principles and Algorithms. Horwood Publishing: Chichester, UK, 2007.

97

Kraus, Lauren E. Using Cluster Analysis to Identify Relationships Between Old
English Poems. Undergraduate Thesis, Wheaton College (MA), May 2010.

LeBlanc, Mark D.; Kahn, Michael J.; Drout, Michael D. C.; Brousseau, Matthew;
Jones, Amos; Nelson, Christina; and Waltz, Brandon. Wheaton College Lexomics.
http://lexomics.wheatoncollege.edu, 2010.

Leping, Vambola; Lepp, Marina; Niitsoo, Margus; T	onisson, Eno; Vene, Varmo; and
Villems, Anne. Python Prevails. ACM International Conference Proceeding Series,
443, 2009.

McCallum, Andrew Kachites. MALLET: A Machine Learning for Language Toolkit.
http://mallet.cs.umass.edu, 2002.

Michel, Jean-Baptiste; Yuan Kui Shen, Adrian Veres, Aviva Presser Aiden; Matthew
K. Gray, The Google Books Team Joseph P. Pickett, William Brockman;
Dale Hoiberg, Peter Norvig Jon Orwant Steven Pinker, Dan Clancy; Nowak, Mar-
tin A.; and Aiden, Erez Lieberman. Quantitative Analysis of Culture Using Millions
of Digitized Books. (Published online ahead of print in Science: 12/16/2010), 2010.

R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2010. ISBN
3-900051-07-0.

Scott, Mike. WordSmith Tools version 5. http://www.lexically.net/
downloads/version5/HTML/index.html, 2010.

SEASR. SEASR, 2010. http://seasr.org/documentation/.

TEI Consortium (ed). TEI P5: Guidelines for Electronic Text Encoding and Inter-
change. November 5, 2010. http://www.tei-c.org/P5.

Weiss, Sholom M.; Indurkhya, Nitin; Zhang, Tong; and Damerau, Fred J. Text Min-
ing: Predictive Methods for Analyzing Unstructured Information. Springer: New
York, NY, 2005.

�ytkow, Jan M. Decision Trees. In �ytkow, Jan M. and Klösgen, Willi (eds), Handbook
of Data Mining and Knowledge Discovery, pages 54�56. Oxford University Press,
Inc.: New York, New York, 2002.

98

